論文の概要: REALM: Robust Entropy Adaptive Loss Minimization for Improved
Single-Sample Test-Time Adaptation
- arxiv url: http://arxiv.org/abs/2309.03964v1
- Date: Thu, 7 Sep 2023 18:44:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-11 16:55:20.464226
- Title: REALM: Robust Entropy Adaptive Loss Minimization for Improved
Single-Sample Test-Time Adaptation
- Title(参考訳): REALM: 単サンプルテスト時間適応の改善のためのロバストエントロピー適応損失最小化
- Authors: Skyler Seto, Barry-John Theobald, Federico Danieli, Navdeep Jaitly,
Dan Busbridge
- Abstract要約: フルテスト時間適応(F-TTA)は、列車とテストデータの分散シフトによる性能損失を軽減することができる。
本稿では,F-TTAの雑音に対する堅牢性向上のための一般的な枠組みについて述べる。
- 参考スコア(独自算出の注目度): 5.749155230209001
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fully-test-time adaptation (F-TTA) can mitigate performance loss due to
distribution shifts between train and test data (1) without access to the
training data, and (2) without knowledge of the model training procedure. In
online F-TTA, a pre-trained model is adapted using a stream of test samples by
minimizing a self-supervised objective, such as entropy minimization. However,
models adapted with online using entropy minimization, are unstable especially
in single sample settings, leading to degenerate solutions, and limiting the
adoption of TTA inference strategies. Prior works identify noisy, or
unreliable, samples as a cause of failure in online F-TTA. One solution is to
ignore these samples, which can lead to bias in the update procedure, slow
adaptation, and poor generalization. In this work, we present a general
framework for improving robustness of F-TTA to these noisy samples, inspired by
self-paced learning and robust loss functions. Our proposed approach, Robust
Entropy Adaptive Loss Minimization (REALM), achieves better adaptation accuracy
than previous approaches throughout the adaptation process on corruptions of
CIFAR-10 and ImageNet-1K, demonstrating its effectiveness.
- Abstract(参考訳): フルテスト時間適応(F-TTA)は,トレーニングデータにアクセスせずに,(2)モデルトレーニング手順の知識のない,列車とテストデータの分散シフトによる性能損失を軽減することができる。
オンラインF-TTAでは、エントロピーの最小化などの自己監督対象を最小化することにより、事前訓練されたモデルがテストサンプルのストリームを使用して適応される。
しかし、エントロピー最小化を用いてオンラインに適応したモデルは、特に単一サンプル設定では不安定であり、解を退化させ、TTA推論戦略の採用を制限する。
先行研究は、オンラインf-ttaの失敗の原因として、ノイズや信頼性の低いサンプルを特定した。
ひとつの解決策は、これらのサンプルを無視することであり、更新手順のバイアス、適応の遅さ、一般化不足につながる可能性がある。
本稿では,これらの雑音試料に対するf-ttaのロバスト性を改善するための汎用フレームワークを提案する。
提案手法であるRobust Entropy Adaptive Loss Minimization (REALM) は,CIFAR-10とImageNet-1Kの劣化に対する適応過程を通じて,従来の手法よりも適応精度を向上し,その効果を実証する。
関連論文リスト
- COME: Test-time adaption by Conservatively Minimizing Entropy [45.689829178140634]
保守的に最小化されるエントロピー (COME) は従来のエントロピー (EM) の代替品である
COMEはモデル予測よりもディリクレ事前分布を特徴付けることによって、不確実性を明示的にモデル化する。
我々はCOMEが一般的なベンチマークで最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2024-10-12T09:20:06Z) - Meta-TTT: A Meta-learning Minimax Framework For Test-Time Training [5.9631503543049895]
テスト時ドメイン適応は、推論中に制限された未ラベルのターゲットデータに事前訓練されたモデルを適用することを目的とした、困難なタスクである。
本稿では,バッチ正規化レイヤ上でのテスト時間トレーニングを行うためのメタラーニングミニマックスフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-02T16:16:05Z) - ETAGE: Enhanced Test Time Adaptation with Integrated Entropy and Gradient Norms for Robust Model Performance [18.055032898349438]
テスト時間適応(TTA)は、トレーニング分布から逸脱した未確認のテストデータを扱うために、ディープラーニングモデルを備えている。
本稿では,エントロピー最小化と勾配ノルム,PLPDを統合した改良TTA手法ETAGEを紹介する。
提案手法は,高エントロピーと高勾配ノルムを適応から組み合わせることで,不安定を生じにくいサンプルを優先する。
論文 参考訳(メタデータ) (2024-09-14T01:25:52Z) - Test-Time Model Adaptation with Only Forward Passes [68.11784295706995]
テストタイム適応は、トレーニング済みのモデルを、潜在的に分布シフトのある未確認テストサンプルに適応させるのに有効であることが証明されている。
テスト時間フォワード最適化適応法(FOA)を提案する。
FOAは量子化された8ビットのViTで動作し、32ビットのViTで勾配ベースのTENTより優れ、ImageNet-Cで最大24倍のメモリ削減を実現する。
論文 参考訳(メタデータ) (2024-04-02T05:34:33Z) - Uncertainty-Calibrated Test-Time Model Adaptation without Forgetting [55.17761802332469]
テスト時間適応(TTA)は、与えられたモデルw.r.t.を任意のテストサンプルに適用することにより、トレーニングデータとテストデータの間の潜在的な分散シフトに取り組むことを目指している。
事前の手法は各テストサンプルに対してバックプロパゲーションを実行するため、多くのアプリケーションに対して許容できない最適化コストがかかる。
本稿では, 有効サンプル選択基準を策定し, 信頼性および非冗長なサンプルを同定する, 効率的なアンチフォッティングテスト時間適応法を提案する。
論文 参考訳(メタデータ) (2024-03-18T05:49:45Z) - CAFA: Class-Aware Feature Alignment for Test-Time Adaptation [50.26963784271912]
テスト時間適応(TTA)は、テスト時にラベルのないデータにモデルを適応させることによって、この問題に対処することを目的としている。
本稿では,クラス認識特徴アライメント(CAFA, Class-Aware Feature Alignment)と呼ばれる単純な機能アライメント損失を提案する。
論文 参考訳(メタデータ) (2022-06-01T03:02:07Z) - Efficient Test-Time Model Adaptation without Forgetting [60.36499845014649]
テストタイム適応は、トレーニングとテストデータの間の潜在的な分散シフトに取り組むことを目指している。
信頼性および非冗長なサンプルを同定するためのアクティブなサンプル選択基準を提案する。
また、重要なモデルパラメータを劇的な変化から制約するFisher regularizerを導入します。
論文 参考訳(メタデータ) (2022-04-06T06:39:40Z) - Listen, Adapt, Better WER: Source-free Single-utterance Test-time
Adaptation for Automatic Speech Recognition [65.84978547406753]
Test-time Adaptationは、ソースドメインでトレーニングされたモデルに適応して、テストサンプルの予測を改善することを目的としている。
単一発話テスト時間適応 (SUTA) は音声領域における最初のTTA研究である。
論文 参考訳(メタデータ) (2022-03-27T06:38:39Z) - Tent: Fully Test-time Adaptation by Entropy Minimization [77.85911673550851]
モデルは、テスト中に新しいデータや異なるデータに一般化するように適応する必要があります。
この完全なテスト時間適応の設定では、モデルはテストデータとそれ自身のパラメータしか持たない。
実験エントロピー最小化(tent): 予測のエントロピーによって測定された信頼度に対するモデルを最適化する。
論文 参考訳(メタデータ) (2020-06-18T17:55:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。