Accurate Hyperfine Tensors for Solid State Quantum Applications: Case of the NV Center in Diamond
- URL: http://arxiv.org/abs/2309.03983v3
- Date: Thu, 9 May 2024 11:08:41 GMT
- Title: Accurate Hyperfine Tensors for Solid State Quantum Applications: Case of the NV Center in Diamond
- Authors: István Takács, Viktor Ivády,
- Abstract summary: We show that the absolute relative error of the computed hyperfine parameters can exceed 100% in VASP for weakly coupled nuclear spins.
The provided accurate hyperfine data for the NV center enables high-precision simulation of NV quantum nodes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The decoherence of point defect qubits is often governed by the electron spin-nuclear spin hyperfine interaction that can be parameterized by using ab inito calculations in principle. So far most of the theoretical works have focused on the hyperfine interaction of the closest nuclear spins, while the accuracy of the predictions for distinct nuclear spins is barely discussed. We demonstrate for the case of the NV center in diamond that the absolute relative error of the computed hyperfine parameters can exceed 100\% in VASP for weakly coupled nuclear spins. To overcome this issue, we implement an alternative method and report on significantly improved hyperfine values with $O$(1\%) relative mean error at all distances. The provided accurate hyperfine data for the NV center enables high-precision simulation of NV quantum nodes for quantum information processing and positioning of nuclear spins by comparing experimental and theoretical hyperfine data.
Related papers
- Scalable parallel measurement of individual nitrogen-vacancy centers [0.0]
The nitrogen-vacancy center in diamond is a solid-state spin defect that has been widely adopted for quantum sensing and quantum information processing applications.
We introduce an experimental platform that addresses multiple optically resolved NV centers in parallel.
We show that the high signal-to-noise ratio of the measurements enables the detection of shot-to-shot pairwise correlations between the spin states of 10 NV centers.
arXiv Detail & Related papers (2024-08-21T15:38:42Z) - All-electron $\mathrm{\textit{ab-initio}}$ hyperfine coupling of Si-,
Ge- and Sn-vacancy defects in diamond [0.0]
We report on the first all-electron textitab-initio calculations of the hyperfine constants for SiV, GeV, and SnV defects in diamond.
Our results will help to guide future novel experiments on these defects.
arXiv Detail & Related papers (2023-09-25T07:29:47Z) - Guiding Diamond Spin Qubit Growth with Computational Methods [14.693424479293737]
We show the use of theoretical calculations of electronic central spin decoherence as an integral part of an NV-spin bath workflow.
We then build a maximum likelihood estimator with our theoretical model, enabling the characterization of a test sample.
arXiv Detail & Related papers (2023-08-17T15:53:42Z) - Control of an environmental spin defect beyond the coherence limit of a central spin [79.16635054977068]
We present a scalable approach to increase the size of electronic-spin registers.
We experimentally realize this approach to demonstrate the detection and coherent control of an unknown electronic spin outside the coherence limit of a central NV.
Our work paves the way for engineering larger quantum spin registers with the potential to advance nanoscale sensing, enable correlated noise spectroscopy for error correction, and facilitate the realization of spin-chain quantum wires for quantum communication.
arXiv Detail & Related papers (2023-06-29T17:55:16Z) - Decoherence of Nuclear Spins in the Proximity of Nitrogen Vacancy
Centers in Diamond [0.0]
Nuclear spins in solids are promising platforms for quantum information processing.
We study the nuclear decoherence processes in the vicinity of the nitrogen-vacancy (NV) center in diamond.
arXiv Detail & Related papers (2023-02-07T04:58:38Z) - Probing the Evolution of Electron Spin Wavefunction of NV Center in
diamond via Pressure Tuning [3.8020122388139628]
We use pressure as a tuning method and a nuclear spin as an atomic scale probe to monitor the hyperfine structure of negatively charged nitrogen vacancy (NV) centers in diamonds under pressure.
We show that the NV hyperfine parameters have prominent changes, resulting in an increase in the NV electron spin density and rehybridization from $sp3$ to $sp2$ bonds.
arXiv Detail & Related papers (2022-12-15T07:12:51Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Hardware-efficient error-correcting codes for large nuclear spins [62.997667081978825]
We present a hardware-efficient quantum protocol that corrects phase flips of a nuclear spin using explicit experimentally feasible operations.
Results provide a realizable blueprint for a corrected spin-based qubit.
arXiv Detail & Related papers (2021-03-15T17:14:48Z) - Probing the coherence of solid-state qubits at avoided crossings [51.805457601192614]
We study the quantum dynamics of paramagnetic defects interacting with a nuclear spin bath at avoided crossings.
The proposed theoretical approach paves the way to designing the coherence properties of spin qubits from first principles.
arXiv Detail & Related papers (2020-10-21T15:37:59Z) - A multiconfigurational study of the negatively charged nitrogen-vacancy
center in diamond [55.58269472099399]
Deep defects in wide band gap semiconductors have emerged as leading qubit candidates for realizing quantum sensing and information applications.
Here we show that unlike single-particle treatments, the multiconfigurational quantum chemistry methods, traditionally reserved for atoms/molecules, accurately describe the many-body characteristics of the electronic states of these defect centers.
arXiv Detail & Related papers (2020-08-24T01:49:54Z) - Hyperfine and quadrupole interactions for Dy isotopes in DyPc$_2$
molecules [77.57930329012771]
Nuclear spin levels play an important role in understanding magnetization dynamics and implementation and control of quantum bits in lanthanide-based single-molecule magnets.
We investigate the hyperfine and nuclear quadrupole interactions for $161$Dy and $163$Dy nucleus in anionic DyPc$.
arXiv Detail & Related papers (2020-02-12T18:25:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.