Decoherence of Nuclear Spins in the Proximity of Nitrogen Vacancy
Centers in Diamond
- URL: http://arxiv.org/abs/2302.03257v1
- Date: Tue, 7 Feb 2023 04:58:38 GMT
- Title: Decoherence of Nuclear Spins in the Proximity of Nitrogen Vacancy
Centers in Diamond
- Authors: Mykyta Onizhuk and Giulia Galli
- Abstract summary: Nuclear spins in solids are promising platforms for quantum information processing.
We study the nuclear decoherence processes in the vicinity of the nitrogen-vacancy (NV) center in diamond.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nuclear spins in the proximity of electronic spin defects in solids are
promising platforms for quantum information processing due to their ability to
preserve quantum states for a remarkably long time. Here we report a
comprehensive study of the nuclear decoherence processes in the vicinity of the
nitrogen-vacancy (NV) center in diamond. We simulate from first principles the
change in the dynamics of nuclear spins as a function of distance and state of
the NV center and validate our results with experimental data. Our simulations
reveal nontrivial oscillations in the Hahn echo signal, pointing to a new
sensing modality of dynamical-decoupling spectroscopy, and show how
hybridization of the electronic states suppresses the coherence time of
strongly coupled nuclear spins. The computational framework developed in our
work is general and can be broadly applied to predict the dynamical properties
of nuclear spins.
Related papers
- Single-shot readout of the nuclear spin of an on-surface atom [2.2908892874617357]
Nuclear spins owe their long-lived magnetic states to their excellent isolation from the environment.
detailed knowledge of and control over the atomic environment of a nuclear spin is key to optimizing conditions for quantum information applications.
Here, we demonstrate single-shot readout of an individual $text49$Ti nuclear spin with an STM.
arXiv Detail & Related papers (2024-10-11T10:47:46Z) - Blueprint for efficient nuclear spin characterization with color center [0.0]
Nuclear spins in solids offer a promising avenue for developing scalable quantum hardware.
Characterising individual nuclear spins is quite cumbersome since the characterisation protocols may differ depending on the strength of the hyperfine coupling.
We present a more straightforward approach for determining the hyperfine interactions among each nuclear and the electron spin.
arXiv Detail & Related papers (2024-02-12T22:54:52Z) - Hyperpolarisation of nuclear spins: polarisation blockade [0.0]
pulse-based protocols have been shown to efficiently transfer optically induced polarisation of the electron defect spin to surrounding nuclear spins.
We find that whenever polarisation resonances of nuclear spins are near-degenerate with a blocking' spin, which is single spin with stronger off-diagonal coupling to the electronic central spin, they are displaced out of the central resonant region.
arXiv Detail & Related papers (2023-09-07T15:02:54Z) - Phonon-Induced Decoherence in Color-Center Qubits [1.6280801141284873]
Electron spin states of solid-state defects are a leading quantum-memory candidate for quantum communications and computing.
We derive the time dynamics of the density operator of an electron-spin qubit.
We use our model to corroborate experimentally-measured decoherence rates.
arXiv Detail & Related papers (2023-05-08T21:11:24Z) - Decoupling Nuclear Spins via Interaction-Induced Freezing in Nitrogen
Vacancy Centers in Diamond [0.0]
Nitrogen-Vacancy (NV) centers in diamonds provide a room-temperature platform for emerging quantum technologies.
We demonstrate a freezing protocol for an NV center to isolate its intrinsic nuclear spin from a noisy electromagnetic environment.
arXiv Detail & Related papers (2022-04-08T07:01:51Z) - Quantum control of nuclear spin qubits in a rapidly rotating diamond [62.997667081978825]
Nuclear spins in certain solids couple weakly to their environment, making them attractive candidates for quantum information processing and inertial sensing.
We demonstrate optical nuclear spin polarization and rapid quantum control of nuclear spins in a diamond physically rotating at $1,$kHz, faster than the nuclear spin coherence time.
Our work liberates a previously inaccessible degree of freedom of the NV nuclear spin, unlocking new approaches to quantum control and rotation sensing.
arXiv Detail & Related papers (2021-07-27T03:39:36Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
Clock transitions protect molecular spin qubits from magnetic noise.
linear coupling to nuclear degrees of freedom causes a modulation and decay of electronic coherence.
An absence of quantum information leakage to the nuclear bath provides opportunities to characterize other decoherence sources.
arXiv Detail & Related papers (2021-06-09T16:23:47Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - A multiconfigurational study of the negatively charged nitrogen-vacancy
center in diamond [55.58269472099399]
Deep defects in wide band gap semiconductors have emerged as leading qubit candidates for realizing quantum sensing and information applications.
Here we show that unlike single-particle treatments, the multiconfigurational quantum chemistry methods, traditionally reserved for atoms/molecules, accurately describe the many-body characteristics of the electronic states of these defect centers.
arXiv Detail & Related papers (2020-08-24T01:49:54Z) - The limit of spin lifetime in solid-state electronic spins [77.34726150561087]
We provide a complete first-principles picture of spin relaxation that includes up to two-phonon processes.
We study a vanadium-based molecular qubit and reveal that the spin lifetime at high temperature is limited by Raman processes.
arXiv Detail & Related papers (2020-04-08T14:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.