Computationally Efficient Data-Driven Discovery and Linear
Representation of Nonlinear Systems For Control
- URL: http://arxiv.org/abs/2309.04074v1
- Date: Fri, 8 Sep 2023 02:19:14 GMT
- Title: Computationally Efficient Data-Driven Discovery and Linear
Representation of Nonlinear Systems For Control
- Authors: Madhur Tiwari, George Nehma, Bethany Lusch
- Abstract summary: This work focuses on developing a data-driven framework using Koopman operator theory for system identification and linearization of nonlinear systems for control.
We show that our proposed method is trained more efficiently and is more accurate than an autoencoder baseline.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work focuses on developing a data-driven framework using Koopman
operator theory for system identification and linearization of nonlinear
systems for control. Our proposed method presents a deep learning framework
with recursive learning. The resulting linear system is controlled using a
linear quadratic control. An illustrative example using a pendulum system is
presented with simulations on noisy data. We show that our proposed method is
trained more efficiently and is more accurate than an autoencoder baseline.
Related papers
- Identification For Control Based on Neural Networks: Approximately Linearizable Models [42.15267357325546]
This work presents a control-oriented identification scheme for efficient control design and stability analysis of nonlinear systems.
Neural networks are used to identify a discrete-time nonlinear state-space model to approximate time-domain input-output behavior.
The network is constructed such that the identified model is approximately linearizable by feedback, ensuring that the control law trivially follows from the learning stage.
arXiv Detail & Related papers (2024-09-24T08:31:22Z) - In-Distribution Barrier Functions: Self-Supervised Policy Filters that
Avoid Out-of-Distribution States [84.24300005271185]
We propose a control filter that wraps any reference policy and effectively encourages the system to stay in-distribution with respect to offline-collected safe demonstrations.
Our method is effective for two different visuomotor control tasks in simulation environments, including both top-down and egocentric view settings.
arXiv Detail & Related papers (2023-01-27T22:28:19Z) - Deep Koopman Operator with Control for Nonlinear Systems [44.472875714432504]
We propose an end-to-end deep learning framework to learn the Koopman embedding function and Koopman Operator.
We first parameterize the embedding function and Koopman Operator with the neural network and train them end-to-end with the K-steps loss function.
We then design an auxiliary control network to encode the nonlinear state-dependent control term to model the nonlinearity in control input.
arXiv Detail & Related papers (2022-02-16T11:40:36Z) - Recurrent Neural Network Training with Convex Loss and Regularization
Functions by Extended Kalman Filtering [0.20305676256390928]
We show that the learning method outperforms gradient descent in a nonlinear system identification benchmark.
We also explore the use of the algorithm in data-driven nonlinear model predictive control and its relation with disturbance models for offset-free tracking.
arXiv Detail & Related papers (2021-11-04T07:49:15Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z) - Non-Episodic Learning for Online LQR of Unknown Linear Gaussian System [0.0]
We propose an online non-episodic algorithm that gains knowledge about the system from a single trajectory.
We characterize the almost sure convergence rates of identification and control, and reveal an optimal trade-off between exploration and exploitation.
arXiv Detail & Related papers (2021-03-24T15:51:28Z) - Average Cost Optimal Control of Stochastic Systems Using Reinforcement
Learning [0.19036571490366497]
We propose an online learning scheme to estimate the kernel matrix of Q-function.
The obtained control gain and kernel matrix are proved to converge to the optimal ones.
arXiv Detail & Related papers (2020-10-13T08:51:06Z) - Active Learning for Nonlinear System Identification with Guarantees [102.43355665393067]
We study a class of nonlinear dynamical systems whose state transitions depend linearly on a known feature embedding of state-action pairs.
We propose an active learning approach that achieves this by repeating three steps: trajectory planning, trajectory tracking, and re-estimation of the system from all available data.
We show that our method estimates nonlinear dynamical systems at a parametric rate, similar to the statistical rate of standard linear regression.
arXiv Detail & Related papers (2020-06-18T04:54:11Z) - How Training Data Impacts Performance in Learning-based Control [67.7875109298865]
This paper derives an analytical relationship between the density of the training data and the control performance.
We formulate a quality measure for the data set, which we refer to as $rho$-gap.
We show how the $rho$-gap can be applied to a feedback linearizing control law.
arXiv Detail & Related papers (2020-05-25T12:13:49Z) - Data-Driven Factor Graphs for Deep Symbol Detection [107.63351413549992]
We propose to implement factor graph methods in a data-driven manner.
In particular, we propose to use machine learning (ML) tools to learn the factor graph.
We demonstrate that the proposed system, referred to as BCJRNet, learns to implement the BCJR algorithm from a small training set.
arXiv Detail & Related papers (2020-01-31T09:23:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.