In-Distribution Barrier Functions: Self-Supervised Policy Filters that
Avoid Out-of-Distribution States
- URL: http://arxiv.org/abs/2301.12012v1
- Date: Fri, 27 Jan 2023 22:28:19 GMT
- Title: In-Distribution Barrier Functions: Self-Supervised Policy Filters that
Avoid Out-of-Distribution States
- Authors: Fernando Casta\~neda, Haruki Nishimura, Rowan McAllister, Koushil
Sreenath, Adrien Gaidon
- Abstract summary: We propose a control filter that wraps any reference policy and effectively encourages the system to stay in-distribution with respect to offline-collected safe demonstrations.
Our method is effective for two different visuomotor control tasks in simulation environments, including both top-down and egocentric view settings.
- Score: 84.24300005271185
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning-based control approaches have shown great promise in performing
complex tasks directly from high-dimensional perception data for real robotic
systems. Nonetheless, the learned controllers can behave unexpectedly if the
trajectories of the system divert from the training data distribution, which
can compromise safety. In this work, we propose a control filter that wraps any
reference policy and effectively encourages the system to stay in-distribution
with respect to offline-collected safe demonstrations. Our methodology is
inspired by Control Barrier Functions (CBFs), which are model-based tools from
the nonlinear control literature that can be used to construct minimally
invasive safe policy filters. While existing methods based on CBFs require a
known low-dimensional state representation, our proposed approach is directly
applicable to systems that rely solely on high-dimensional visual observations
by learning in a latent state-space. We demonstrate that our method is
effective for two different visuomotor control tasks in simulation
environments, including both top-down and egocentric view settings.
Related papers
- Learning-Based Shielding for Safe Autonomy under Unknown Dynamics [9.786577115501602]
Shielding is a method used to guarantee the safety of a system under a black-box controller.
This paper proposes a data-driven shielding methodology that guarantees safety for unknown systems.
arXiv Detail & Related papers (2024-10-07T16:10:15Z) - Learning-Based Optimal Control with Performance Guarantees for Unknown Systems with Latent States [4.4820711784498]
This paper proposes a novel method for the computation of an optimal input trajectory for unknown nonlinear systems with latent states.
The effectiveness of the proposed method is demonstrated in a numerical simulation.
arXiv Detail & Related papers (2023-03-31T11:06:09Z) - A Deep Learning Technique to Control the Non-linear Dynamics of a
Gravitational-wave Interferometer [0.0]
We developed a deep learning technique that successfully solves a non-linear dynamic control problem.
We applied this technique to a crucial non-linear control problem that arises in the operation of the LIGO system.
We also developed a computationally efficient model that can run in real time at high sampling rate on a single modern CPU core.
arXiv Detail & Related papers (2023-02-15T19:47:56Z) - ControlVAE: Model-Based Learning of Generative Controllers for
Physics-Based Characters [28.446959320429656]
We introduce ControlVAE, a model-based framework for learning generative motion control policies based on variational autoencoders (VAE)
Our framework can learn a rich and flexible latent representation of skills and a skill-conditioned generative control policy from a diverse set of unorganized motion sequences.
We demonstrate the effectiveness of ControlVAE using a diverse set of tasks, which allows realistic and interactive control of the simulated characters.
arXiv Detail & Related papers (2022-10-12T10:11:36Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
We introduce a model-uncertainty-aware reformulation of CBF-based safety-critical controllers.
We then present the pointwise feasibility conditions of the resulting safety controller.
We use these conditions to devise an event-triggered online data collection strategy.
arXiv Detail & Related papers (2022-08-23T05:02:09Z) - Learning Robust Output Control Barrier Functions from Safe Expert Demonstrations [50.37808220291108]
This paper addresses learning safe output feedback control laws from partial observations of expert demonstrations.
We first propose robust output control barrier functions (ROCBFs) as a means to guarantee safety.
We then formulate an optimization problem to learn ROCBFs from expert demonstrations that exhibit safe system behavior.
arXiv Detail & Related papers (2021-11-18T23:21:00Z) - Enforcing robust control guarantees within neural network policies [76.00287474159973]
We propose a generic nonlinear control policy class, parameterized by neural networks, that enforces the same provable robustness criteria as robust control.
We demonstrate the power of this approach on several domains, improving in average-case performance over existing robust control methods and in worst-case stability over (non-robust) deep RL methods.
arXiv Detail & Related papers (2020-11-16T17:14:59Z) - Learning Hybrid Control Barrier Functions from Data [66.37785052099423]
Motivated by the lack of systematic tools to obtain safe control laws for hybrid systems, we propose an optimization-based framework for learning certifiably safe control laws from data.
In particular, we assume a setting in which the system dynamics are known and in which data exhibiting safe system behavior is available.
arXiv Detail & Related papers (2020-11-08T23:55:02Z) - Guided Uncertainty-Aware Policy Optimization: Combining Learning and
Model-Based Strategies for Sample-Efficient Policy Learning [75.56839075060819]
Traditional robotic approaches rely on an accurate model of the environment, a detailed description of how to perform the task, and a robust perception system to keep track of the current state.
reinforcement learning approaches can operate directly from raw sensory inputs with only a reward signal to describe the task, but are extremely sample-inefficient and brittle.
In this work, we combine the strengths of model-based methods with the flexibility of learning-based methods to obtain a general method that is able to overcome inaccuracies in the robotics perception/actuation pipeline.
arXiv Detail & Related papers (2020-05-21T19:47:05Z) - Learning Constrained Adaptive Differentiable Predictive Control Policies
With Guarantees [1.1086440815804224]
We present differentiable predictive control (DPC), a method for learning constrained neural control policies for linear systems.
We employ automatic differentiation to obtain direct policy gradients by backpropagating the model predictive control (MPC) loss function and constraints penalties through a differentiable closed-loop system dynamics model.
arXiv Detail & Related papers (2020-04-23T14:24:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.