論文の概要: Toward Sufficient Spatial-Frequency Interaction for Gradient-aware
Underwater Image Enhancement
- arxiv url: http://arxiv.org/abs/2309.04089v1
- Date: Fri, 8 Sep 2023 02:58:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-11 16:16:14.755434
- Title: Toward Sufficient Spatial-Frequency Interaction for Gradient-aware
Underwater Image Enhancement
- Title(参考訳): グラディエント対応水中画像強調のための空間-周波数相互作用
- Authors: Chen Zhao, Weiling Cai, Chenyu Dong, Ziqi Zeng
- Abstract要約: 本研究では,空間周波数相互作用と勾配図に基づく新しい水中画像強調(UIE)フレームワークを開発する。
2つの実世界の水中画像データセットによる実験結果から,本手法が水中画像の強化に有効であることが確認された。
- 参考スコア(独自算出の注目度): 5.553172974022233
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Underwater images suffer from complex and diverse degradation, which
inevitably affects the performance of underwater visual tasks. However, most
existing learning-based Underwater image enhancement (UIE) methods mainly
restore such degradations in the spatial domain, and rarely pay attention to
the fourier frequency information. In this paper, we develop a novel UIE
framework based on spatial-frequency interaction and gradient maps, namely
SFGNet, which consists of two stages. Specifically, in the first stage, we
propose a dense spatial-frequency fusion network (DSFFNet), mainly including
our designed dense fourier fusion block and dense spatial fusion block,
achieving sufficient spatial-frequency interaction by cross connections between
these two blocks. In the second stage, we propose a gradient-aware corrector
(GAC) to further enhance perceptual details and geometric structures of images
by gradient map. Experimental results on two real-world underwater image
datasets show that our approach can successfully enhance underwater images, and
achieves competitive performance in visual quality improvement.
- Abstract(参考訳): 水中画像は複雑で多様な劣化に悩まされ、必然的に水中視覚タスクのパフォーマンスに影響する。
しかし,既存の学習に基づく水中画像強調法 (uie) では,主に空間領域の劣化を復元し,フーリエ周波数情報に注意を払うことがほとんどである。
本稿では,空間周波数相互作用と勾配マップ,すなわち2段階からなるSFGNetに基づく新しいUIEフレームワークを開発する。
具体的には,2つのブロック間の相互接続によって十分な空間-周波数相互作用を実現するために,設計した高密度フーリエ融合ブロックと高密度空間融合ブロックを含む高密度空間-周波数融合ネットワーク(DSFFNet)を提案する。
第2段階では、勾配マップによる画像の知覚的詳細と幾何学的構造をさらに強化する勾配対応補正器(GAC)を提案する。
2つの実世界の水中画像データセットによる実験結果から,本手法は水中画像の高度化に成功し,視覚的品質向上の競争力を発揮することが示された。
関連論文リスト
- FDCE-Net: Underwater Image Enhancement with Embedding Frequency and Dual Color Encoder [49.79611204954311]
水中画像は、低明度、色の変化、ぼやけた詳細、吸光光によるノイズ、水や懸濁粒子による散乱などの様々な問題に悩まされることが多い。
従来の水中画像強調法(UIE)は主に空間領域の強調に焦点を当てており、画像固有の周波数領域情報を無視している。
論文 参考訳(メタデータ) (2024-04-27T15:16:34Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
水中画像強調(UIE)は、水中環境によって引き起こされる複雑な劣化のために難しい課題である。
従来の手法では、劣化過程を理想化し、中音や物体の動きが画像の特徴の分布に与える影響を無視することが多い。
提案手法では,予測画像を用いて疑似ラベルを動的に更新し,動的勾配を加えてネットワークの勾配空間を最適化する。
論文 参考訳(メタデータ) (2023-12-12T06:07:21Z) - A Gated Cross-domain Collaborative Network for Underwater Object
Detection [14.715181402435066]
水中物体検出は養殖と海洋環境保護において重要な役割を担っている。
水中画像の品質向上のため,水中画像強調法(UIE)が提案されている。
本稿では,水中環境における可視性とコントラストの低さの課題に対処するため,GCC-Net(Gated Cross-domain Collaborative Network)を提案する。
論文 参考訳(メタデータ) (2023-06-25T06:28:28Z) - PUGAN: Physical Model-Guided Underwater Image Enhancement Using GAN with
Dual-Discriminators [120.06891448820447]
鮮明で視覚的に快適な画像を得る方法は、人々の共通の関心事となっている。
水中画像強調(UIE)の課題も、時間とともに現れた。
本稿では,UIE のための物理モデル誘導型 GAN モデルを提案する。
我々のPUGANは質的および定量的な測定値において最先端の手法より優れています。
論文 参考訳(メタデータ) (2023-06-15T07:41:12Z) - Domain Adaptation for Underwater Image Enhancement via Content and Style
Separation [7.077978580799124]
水中画像は、カラーキャスト、低コントラスト、光吸収、屈折、散乱によるハジー効果に悩まされている。
近年の学習に基づく手法は水中画像の強調に驚くべき性能を示した。
本稿では,コンテンツとスタイル分離による水中画像強調のためのドメイン適応フレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-17T09:30:29Z) - U-shape Transformer for Underwater Image Enhancement [0.0]
本研究では,5004枚の画像対を含む大規模水中画像データセットを構築した。
UIEタスクに初めてトランスモデルを導入したU字型トランスを報告した。
コントラストと彩度をさらに向上するため、RGB, LAB, LCH色空間を組み合わせた新しいロス関数を設計した。
論文 参考訳(メタデータ) (2021-11-23T13:15:56Z) - Domain Adaptation for Underwater Image Enhancement [51.71570701102219]
本稿では,ドメイン間およびドメイン内ギャップを最小限に抑えるために,新しい2相水中ドメイン適応ネットワーク(TUDA)を提案する。
第1段階では、入力画像のリアリズムを強化する翻訳部と、拡張部とを含む新しい二重配向ネットワークを設計する。
第2フェーズでは、ランクベースの水中品質評価手法が組み込まれている強化画像の評価品質に応じて、実データを簡単に分類する。
論文 参考訳(メタデータ) (2021-08-22T06:38:19Z) - Wavelength-based Attributed Deep Neural Network for Underwater Image
Restoration [9.378355457555319]
本稿では,色チャネルの移動範囲に基づいて,適切な受容場サイズ(コンテキスト)を付与することで,大幅な性能向上が期待できることを示す。
第2の新規性として、学習したマルチコンテキスト特徴を適応的に洗練するための注意的スキップ機構を組み込んだ。
提案するフレームワークはDeep WaveNetと呼ばれ、従来のピクセル単位で機能ベースのコスト関数を使って最適化されている。
論文 参考訳(メタデータ) (2021-06-15T06:47:51Z) - Underwater Image Enhancement via Medium Transmission-Guided Multi-Color
Space Embedding [88.46682991985907]
本稿では,Ucolor と呼ばれる媒体透過誘導多色空間埋め込みによる水中画像強調ネットワークを提案する。
当社のネットワークは、複数の色空間を埋め込むことにより、水中画像の視覚的品質を効果的に改善できます。
論文 参考訳(メタデータ) (2021-04-27T07:35:30Z) - Underwater Image Enhancement via Learning Water Type Desensitized
Representations [29.05252230912826]
本稿では,これらの課題に対処するため,SCNetと呼ばれる新しい水中画像強調(UIE)フレームワークを提案する。
SCNetは、空間次元とチャネル次元の両方にわたる正規化スキームに基づいており、水型脱感応特徴を学習する鍵となるアイデアである。
2つの実世界のUIEデータセットによる実験結果から,提案手法は多様な水型で画像の強化に有効であることが示された。
論文 参考訳(メタデータ) (2021-02-01T07:34:54Z) - Dense Attention Fluid Network for Salient Object Detection in Optical
Remote Sensing Images [193.77450545067967]
光リモートセンシング画像(RSI)における有意物体検出のためのエンド・ツー・エンドDense Attention Fluid Network(DAFNet)を提案する。
GCA(Global Context-Aware Attention)モジュールは、長距離の意味的関係を適応的にキャプチャするために提案される。
我々は、2000枚の画像とピクセルワイドなサリエンシアノテーションを含むSODのための新しい、挑戦的な光学RSIデータセットを構築した。
論文 参考訳(メタデータ) (2020-11-26T06:14:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。