論文の概要: Penetrating Shields: A Systematic Analysis of Memory Corruption Mitigations in the Spectre Era
- arxiv url: http://arxiv.org/abs/2309.04119v1
- Date: Fri, 8 Sep 2023 04:43:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 16:20:50.052557
- Title: Penetrating Shields: A Systematic Analysis of Memory Corruption Mitigations in the Spectre Era
- Title(参考訳): 透過シールド:スペクター時代の記憶破壊の系統的解析
- Authors: Weon Taek Na, Joel S. Emer, Mengjia Yan,
- Abstract要約: 我々は、投機的実行攻撃を利用した投機的シールドバイパス攻撃を調査し、メモリ破損防止のセキュリティに重要な秘密を漏洩させる。
本稿では,すでに配備されている緩和機構と,最先端の2つの学術的提案を対象とする概念実証攻撃について述べる。
- 参考スコア(独自算出の注目度): 6.212464457097657
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper provides the first systematic analysis of a synergistic threat model encompassing memory corruption vulnerabilities and microarchitectural side-channel vulnerabilities. We study speculative shield bypass attacks that leverage speculative execution attacks to leak secrets that are critical to the security of memory corruption mitigations (i.e., the shields), and then use the leaked secrets to bypass the mitigation mechanisms and successfully conduct memory corruption exploits, such as control-flow hijacking. We start by systematizing a taxonomy of the state-of-the-art memory corruption mitigations focusing on hardware-software co-design solutions. The taxonomy helps us to identify 10 likely vulnerable defense schemes out of 20 schemes that we analyze. Next, we develop a graph-based model to analyze the 10 likely vulnerable defenses and reason about possible countermeasures. Finally, we present three proof-of-concept attacks targeting an already-deployed mitigation mechanism and two state-of-the-art academic proposals.
- Abstract(参考訳): 本稿では,メモリ破損の脆弱性とマイクロアーキテクチャー側チャネルの脆弱性を含む相乗的脅威モデルについて,初めて体系的解析を行った。
我々は、投機的実行攻撃を利用した投機的シールドバイパス攻撃を調査し、メモリ破損対策(例えば、シールド)のセキュリティに重要な秘密を漏らし、漏洩した秘密を用いて緩和機構をバイパスし、制御フローハイジャックのようなメモリ破損対策を成功させる。
まず、ハードウェアとソフトウェアの共同設計ソリューションに焦点を当てた、最先端のメモリ破損対策の分類を体系化することから始める。
この分類は、分析する20のスキームのうち10の潜在的に脆弱な防御策を特定するのに役立ちます。
次に,潜在的に脆弱な10の防御を解析し,対応可能な対策を推論するグラフベースモデルを構築した。
最後に,すでに配備されている緩和機構と2つの最先端の学術的提案を対象とする概念実証攻撃を提案する。
関連論文リスト
- Defense against Joint Poison and Evasion Attacks: A Case Study of DERMS [2.632261166782093]
IDSの第1の枠組みは, ジョイント中毒や回避攻撃に対して堅牢である。
IEEE-13バスフィードモデルにおける本手法のロバスト性を検証する。
論文 参考訳(メタデータ) (2024-05-05T16:24:30Z) - Bridging the Gap: Automated Analysis of Sancus [2.045495982086173]
本研究では,サンクスの組込みセキュリティアーキテクチャにおけるこのギャップを減らすための新しい手法を提案する。
我々の手法は、与えられた脅威モデルにおける攻撃を見つけるか、システムのセキュリティに対する確率的保証を与える。
論文 参考訳(メタデータ) (2024-04-15T07:26:36Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuardは、障害タイプとゾーン分類のための最初のフレームワークであり、敵攻撃に耐性がある。
本稿では,ロバスト性を高めるために,低複雑性故障予測モデルとオンライン逆行訓練手法を提案する。
本モデルでは,耐故障予測ベンチマークの最先端を最大0.958の精度で上回っている。
論文 参考訳(メタデータ) (2024-03-26T08:51:23Z) - Kick Bad Guys Out! Conditionally Activated Anomaly Detection in Federated Learning with Zero-Knowledge Proof Verification [22.078088272837068]
フェデレーテッド・ラーニング(FL)システムは敵の攻撃を受けやすい。
現在の防衛方式は現実世界のFLシステムでは実用的ではないことが多い。
本稿では,現実のFLシステムを対象とした新しい異常検出手法を提案する。
論文 参考訳(メタデータ) (2023-10-06T07:09:05Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
我々は,マルウェア検出領域の非ランダム化スムース化技術を再設計し,DRSM(De-Randomized Smoothed MalConv)を開発した。
具体的には,実行可能ファイルの局所構造を最大に保ちながら,逆数バイトの影響を確実に抑制するウィンドウアブレーション方式を提案する。
私たちは、マルウェア実行ファイルの静的検出という領域で、認証された堅牢性を提供する最初の人です。
論文 参考訳(メタデータ) (2023-03-20T17:25:22Z) - Fact-Saboteurs: A Taxonomy of Evidence Manipulation Attacks against
Fact-Verification Systems [80.3811072650087]
証拠のクレームサレントスニペットを微調整し,多様かつクレームアラインな証拠を生成することが可能であることを示す。
この攻撃は、主張のポストホックな修正に対しても堅牢である。
これらの攻撃は、インスペクタブルとヒューマン・イン・ザ・ループの使用シナリオに有害な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2022-09-07T13:39:24Z) - Certifiers Make Neural Networks Vulnerable to Availability Attacks [70.69104148250614]
私たちは初めて、逆転戦略が敵によって意図的に引き起こされる可能性があることを示します。
いくつかの入力や摂動のために自然に発生する障害に加えて、敵は故意にフォールバックを誘発するために訓練時間攻撃を使用することができる。
我々は2つの新しいアベイラビリティーアタックを設計し、これらの脅威の実用的妥当性を示す。
論文 参考訳(メタデータ) (2021-08-25T15:49:10Z) - No Need to Know Physics: Resilience of Process-based Model-free Anomaly
Detection for Industrial Control Systems [95.54151664013011]
本稿では,システムの物理的特性に反する逆スプーフ信号を生成するための新しい枠組みを提案する。
トップセキュリティカンファレンスで公表された4つの異常検知器を分析した。
論文 参考訳(メタデータ) (2020-12-07T11:02:44Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
敵対的な例は、ディープニューラルネットワーク(DNN)ベースの視覚システムにおいて破滅的な誤りを引き起こす可能性がある。
本稿では,入力空間における自己教師型対向学習機構を提案する。
これは、反逆攻撃に対する強力な堅牢性を提供する。
論文 参考訳(メタデータ) (2020-06-08T20:42:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。