Proprioceptive External Torque Learning for Floating Base Robot and its
Applications to Humanoid Locomotion
- URL: http://arxiv.org/abs/2309.04138v1
- Date: Fri, 8 Sep 2023 05:33:56 GMT
- Title: Proprioceptive External Torque Learning for Floating Base Robot and its
Applications to Humanoid Locomotion
- Authors: Daegyu Lim, Myeong-Ju Kim, Junhyeok Cha, Donghyeon Kim, Jaeheung Park
- Abstract summary: This paper introduces a method for learning external joint torque solely using proprioceptive sensors (encoders and IMUs) for a floating base robot.
Real robot experiments demonstrate that the network can estimate the external torque and contact wrench with significantly smaller errors.
The study also validates that the estimated contact wrench can be utilized for zero moment point (ZMP) feedback control.
- Score: 17.384713355349476
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The estimation of external joint torque and contact wrench is essential for
achieving stable locomotion of humanoids and safety-oriented robots. Although
the contact wrench on the foot of humanoids can be measured using a
force-torque sensor (FTS), FTS increases the cost, inertia, complexity, and
failure possibility of the system. This paper introduces a method for learning
external joint torque solely using proprioceptive sensors (encoders and IMUs)
for a floating base robot. For learning, the GRU network is used and random
walking data is collected. Real robot experiments demonstrate that the network
can estimate the external torque and contact wrench with significantly smaller
errors compared to the model-based method, momentum observer (MOB) with
friction modeling. The study also validates that the estimated contact wrench
can be utilized for zero moment point (ZMP) feedback control, enabling stable
walking. Moreover, even when the robot's feet and the inertia of the upper body
are changed, the trained network shows consistent performance with a
model-based calibration. This result demonstrates the possibility of removing
FTS on the robot, which reduces the disadvantages of hardware sensors. The
summary video is available at https://youtu.be/gT1D4tOiKpo.
Related papers
- Taccel: Scaling Up Vision-based Tactile Robotics via High-performance GPU Simulation [50.34179054785646]
We present Taccel, a high-performance simulation platform that integrates IPC and ABD to model robots, tactile sensors, and objects with both accuracy and unprecedented speed.
Taccel provides precise physics simulation and realistic tactile signals while supporting flexible robot-sensor configurations through user-friendly APIs.
These capabilities position Taccel as a powerful tool for scaling up tactile robotics research and development.
arXiv Detail & Related papers (2025-04-17T12:57:11Z) - LPAC: Learnable Perception-Action-Communication Loops with Applications
to Coverage Control [80.86089324742024]
We propose a learnable Perception-Action-Communication (LPAC) architecture for the problem.
CNN processes localized perception; a graph neural network (GNN) facilitates robot communications.
Evaluations show that the LPAC models outperform standard decentralized and centralized coverage control algorithms.
arXiv Detail & Related papers (2024-01-10T00:08:00Z) - Learning-based adaption of robotic friction models [48.453527255659296]
We introduce a novel approach to adapt an existing friction model to new dynamics using as little data as possible.
Our proposed estimator outperforms the conventional model-based approach and the base neural network significantly.
Our method does not rely on data with external load during training, eliminating the need for external torque sensors.
arXiv Detail & Related papers (2023-10-25T14:50:15Z) - Robot Learning with Sensorimotor Pre-training [98.7755895548928]
We present a self-supervised sensorimotor pre-training approach for robotics.
Our model, called RPT, is a Transformer that operates on sequences of sensorimotor tokens.
We find that sensorimotor pre-training consistently outperforms training from scratch, has favorable scaling properties, and enables transfer across different tasks, environments, and robots.
arXiv Detail & Related papers (2023-06-16T17:58:10Z) - Fine Robotic Manipulation without Force/Torque Sensor [9.908082209033612]
A typical 6-axis Force/Torque (F/T) sensor is mounted between the robot's wrist and the end-effector in order to measure the forces exerted by the environment onto the robot (the external wrench)
Although a typical 6-axis F/T sensor can provide highly accurate measurements, it is expensive and vulnerable to drift and external impacts.
Existing methods aiming at estimating the external wrench using only the robot's internal signals are limited in scope.
We present a Neural Network based method and argue that by devoting particular attention to the training data structure, it is possible to accurately estimate the
arXiv Detail & Related papers (2023-01-31T05:06:04Z) - 6N-DoF Pose Tracking for Tensegrity Robots [5.398092221687385]
Tensegrity robots are composed of rigid compressive elements (rods) and flexible tensile elements (e.g., cables)
This work aims to address the pose tracking of tensegrity robots through a markerless, vision-based method.
An iterative optimization process is proposed to estimate the 6-DoF poses of each rigid element of a tensegrity robot from an RGB-D video.
arXiv Detail & Related papers (2022-05-29T20:55:29Z) - Model Predictive Control for Fluid Human-to-Robot Handovers [50.72520769938633]
Planning motions that take human comfort into account is not a part of the human-robot handover process.
We propose to generate smooth motions via an efficient model-predictive control framework.
We conduct human-to-robot handover experiments on a diverse set of objects with several users.
arXiv Detail & Related papers (2022-03-31T23:08:20Z) - Training Robots without Robots: Deep Imitation Learning for
Master-to-Robot Policy Transfer [4.318590074766604]
Deep imitation learning is promising for robot manipulation because it only requires demonstration samples.
Existing demonstration methods have deficiencies; bilateral teleoperation requires a complex control scheme and is expensive.
This research proposes a new master-to-robot (M2R) policy transfer system that does not require robots for teaching force feedback-based manipulation tasks.
arXiv Detail & Related papers (2022-02-19T10:55:10Z) - Online Body Schema Adaptation through Cost-Sensitive Active Learning [63.84207660737483]
The work was implemented in a simulation environment, using the 7DoF arm of the iCub robot simulator.
A cost-sensitive active learning approach is used to select optimal joint configurations.
The results show cost-sensitive active learning has similar accuracy to the standard active learning approach, while reducing in about half the executed movement.
arXiv Detail & Related papers (2021-01-26T16:01:02Z) - DIGIT: A Novel Design for a Low-Cost Compact High-Resolution Tactile
Sensor with Application to In-Hand Manipulation [16.54834671357377]
General purpose in-hand manipulation remains one of the unsolved challenges of robotics.
We introduce DIGIT, an inexpensive, compact, and high-resolution tactile sensor geared towards in-hand manipulation.
arXiv Detail & Related papers (2020-05-29T17:07:54Z) - Populations of Spiking Neurons for Reservoir Computing: Closed Loop
Control of a Compliant Quadruped [64.64924554743982]
We present a framework for implementing central pattern generators with spiking neural networks to obtain closed loop robot control.
We demonstrate the learning of predefined gait patterns, speed control and gait transition on a simulated model of a compliant quadrupedal robot.
arXiv Detail & Related papers (2020-04-09T14:32:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.