Populations of Spiking Neurons for Reservoir Computing: Closed Loop
Control of a Compliant Quadruped
- URL: http://arxiv.org/abs/2004.04560v2
- Date: Tue, 14 Apr 2020 13:29:35 GMT
- Title: Populations of Spiking Neurons for Reservoir Computing: Closed Loop
Control of a Compliant Quadruped
- Authors: Alexander Vandesompele, Gabriel Urbain, Francis wyffels, Joni Dambre
- Abstract summary: We present a framework for implementing central pattern generators with spiking neural networks to obtain closed loop robot control.
We demonstrate the learning of predefined gait patterns, speed control and gait transition on a simulated model of a compliant quadrupedal robot.
- Score: 64.64924554743982
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Compliant robots can be more versatile than traditional robots, but their
control is more complex. The dynamics of compliant bodies can however be turned
into an advantage using the physical reservoir computing frame-work. By feeding
sensor signals to the reservoir and extracting motor signals from the
reservoir, closed loop robot control is possible. Here, we present a novel
framework for implementing central pattern generators with spiking neural
networks to obtain closed loop robot control. Using the FORCE learning
paradigm, we train a reservoir of spiking neuron populations to act as a
central pattern generator. We demonstrate the learning of predefined gait
patterns, speed control and gait transition on a simulated model of a compliant
quadrupedal robot.
Related papers
- Spiking Neural Networks as a Controller for Emergent Swarm Agents [8.816729033097868]
Existing research explores the possible emergent behaviors in swarms of robots with only a binary sensor and a simple but hand-picked controller structure.
This paper investigates the feasibility of training spiking neural networks to find those local interaction rules that result in particular emergent behaviors.
arXiv Detail & Related papers (2024-10-21T16:41:35Z) - Astrocyte Regulated Neuromorphic Central Pattern Generator Control of
Legged Robotic Locomotion [3.7814142008074954]
This paper introduces an astrocyte regulated Spiking Neural Network (SNN)-based CPG for learning locomotion gait through Reward-Modulated STDP for quadruped robots.
The SNN-based CPG is simulated on a multi-object physics simulation platform resulting in the emergence of a trotting gait while running the robot on flat ground.
$23.3times$ computational power savings is observed in comparison to a state-of-the-art reinforcement learning based robot control algorithm.
arXiv Detail & Related papers (2023-12-25T20:33:16Z) - Robot Learning with Sensorimotor Pre-training [98.7755895548928]
We present a self-supervised sensorimotor pre-training approach for robotics.
Our model, called RPT, is a Transformer that operates on sequences of sensorimotor tokens.
We find that sensorimotor pre-training consistently outperforms training from scratch, has favorable scaling properties, and enables transfer across different tasks, environments, and robots.
arXiv Detail & Related papers (2023-06-16T17:58:10Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
We propose a backpropagation-free approach to robotic control through the neuro-cognitive computational framework of neural generative coding (NGC)
We design an agent built completely from powerful predictive coding/processing circuits that facilitate dynamic, online learning from sparse rewards.
We show that our proposed ActPC agent performs well in the face of sparse (extrinsic) reward signals and is competitive with or outperforms several powerful backprop-based RL approaches.
arXiv Detail & Related papers (2022-09-19T16:49:32Z) - GenLoco: Generalized Locomotion Controllers for Quadrupedal Robots [87.32145104894754]
We introduce a framework for training generalized locomotion (GenLoco) controllers for quadrupedal robots.
Our framework synthesizes general-purpose locomotion controllers that can be deployed on a large variety of quadrupedal robots.
We show that our models acquire more general control strategies that can be directly transferred to novel simulated and real-world robots.
arXiv Detail & Related papers (2022-09-12T15:14:32Z) - REvolveR: Continuous Evolutionary Models for Robot-to-robot Policy
Transfer [57.045140028275036]
We consider the problem of transferring a policy across two different robots with significantly different parameters such as kinematics and morphology.
Existing approaches that train a new policy by matching the action or state transition distribution, including imitation learning methods, fail due to optimal action and/or state distribution being mismatched in different robots.
We propose a novel method named $REvolveR$ of using continuous evolutionary models for robotic policy transfer implemented in a physics simulator.
arXiv Detail & Related papers (2022-02-10T18:50:25Z) - Neuromorphic adaptive spiking CPG towards bio-inspired locomotion of
legged robots [58.720142291102135]
Spiking Central Pattern Generator generates different locomotion patterns driven by an external stimulus.
The locomotion of the end robotic platform (any-legged robot) can be adapted to the terrain by using any sensor as input.
arXiv Detail & Related papers (2021-01-24T12:44:38Z) - A Spiking Central Pattern Generator for the control of a simulated
lamprey robot running on SpiNNaker and Loihi neuromorphic boards [1.8139771201780368]
We propose a spiking neural network and its implementation on neuromorphic hardware as a means to control a simulated lamprey model.
We show that by modifying the input to the network, which can be provided by sensory information, the robot can be controlled dynamically in direction and pace.
This category of spiking algorithms shows a promising potential to exploit the theoretical advantages of neuromorphic hardware in terms of energy efficiency and computational speed.
arXiv Detail & Related papers (2021-01-18T11:04:16Z) - An Astrocyte-Modulated Neuromorphic Central Pattern Generator for
Hexapod Robot Locomotion on Intel's Loihi [0.0]
Locomotion is a crucial challenge for legged robots that is addressed "effortlessly" by biological networks abundant in nature, named central pattern generators (CPG)
Here, we propose a brain-morphic CPG controler based on a comprehensive spiking neural-astrocytic network that generates two gait patterns for a hexapod robot.
Our results pave the way for scaling this and other approaches towards Loihi-controlled locomotion in autonomous mobile robots.
arXiv Detail & Related papers (2020-06-08T17:35:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.