論文の概要: Less Power for More Learning: Restricting OCaml Features for Effective
Teaching
- arxiv url: http://arxiv.org/abs/2309.04179v1
- Date: Fri, 8 Sep 2023 07:49:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-11 15:46:19.483773
- Title: Less Power for More Learning: Restricting OCaml Features for Effective
Teaching
- Title(参考訳): 学習力の低下:効果的な教育のためのOCaml機能制限
- Authors: Max Lang, Nico Petzendorfer
- Abstract要約: 我々は,OCamlプログラミング言語の特徴をサンドボックス化し,制限するフレームワークを提案する。
与えられたエクササイズを解決するのに使用すべきでない言語やライブラリ機能を無効にする方法を説明します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a framework for sandboxing and restricting features of the OCaml
programming language to effectively automate the grading of programming
exercises, scaling to hundreds of submissions. We describe how to disable
language and library features that should not be used to solve a given
exercise. We present an overview of an implementation of a mock IO system to
allow testing of IO-related exercises in a controlled environment. Finally, we
detail a number of security considerations to ensure submitted code remains
sandboxed, allowing automatic grading to be trusted without manual
verification. The source code of our implementation is publicly available.
- Abstract(参考訳): 我々は,OCamlプログラミング言語の機能のサンドボックス化と制限を行うフレームワークを提案する。
与えられた課題を解決するために使用すべきでない言語やライブラリ機能を無効にする方法を説明する。
本稿では,制御環境におけるio関連エクササイズのテストを可能にするモックioシステムの実装の概要について述べる。
最後に、提出されたコードがサンドボックスのままであることを保証するためのセキュリティ上の考慮事項について詳述する。
実装のソースコードは公開されています。
関連論文リスト
- CELA: Cost-Efficient Language Model Alignment for CTR Prediction [71.85120354973073]
CTR(Click-Through Rate)予測は、レコメンダシステムにおいて最重要位置を占める。
最近の取り組みは、プレトレーニング言語モデル(PLM)を統合することでこれらの課題を緩和しようとしている。
CTR予測のためのtextbfCost-textbfEfficient textbfLanguage Model textbfAlignment (textbfCELA)を提案する。
論文 参考訳(メタデータ) (2024-05-17T07:43:25Z) - Enabling Memory Safety of C Programs using LLMs [5.297072277460838]
C言語で書かれた低レベルのコードのメモリ安全性違反は、ソフトウェア脆弱性の主要な原因のひとつであり続けています。
このような違反を建設によって除去する方法の1つは、安全なC方言にCコードを移植することである。
このような方言は、最小限のランタイムオーバーヘッドで安全性を保証するためにプログラマが提供するアノテーションに依存している。
この移植は、プログラマに多大な負担をかける手作業であり、そのため、このテクニックの採用は限られている。
論文 参考訳(メタデータ) (2024-04-01T13:05:54Z) - LILO: Learning Interpretable Libraries by Compressing and Documenting Code [71.55208585024198]
LILOは、反復的に合成、圧縮、文書化を行う、ニューロシンボリックなフレームワークである。
LILOは、LLM誘導プログラム合成と、Stitchから自動化された最近のアルゴリズムの進歩を組み合わせたものである。
LILOのシンセサイザーが学習した抽象化を解釈し、デプロイするのを手助けすることで、AutoDocがパフォーマンスを向上させることが分かりました。
論文 参考訳(メタデータ) (2023-10-30T17:55:02Z) - Code Representation Pre-training with Complements from Program
Executions [29.148208436656216]
テストケースで明らかになったプログラムの動的情報を調べ,それを補体としてコードの特徴表現に埋め込むために,FuzzPretrainを提案する。
FuzzyPretrainは、ソースコードやASTのみをトレーニングしたコード検索に対して、6%/9%のmAP改善を実現した。
論文 参考訳(メタデータ) (2023-09-04T01:57:22Z) - Introducing Language Guidance in Prompt-based Continual Learning [95.03110230754423]
本稿では,Prompt-based Continual Learning (LGCL) のための言語指導手法を提案する。
LGCLは、新しい最先端技術を設定するために、プロンプトベースの連続学習手法の性能を一貫して改善する。
論文 参考訳(メタデータ) (2023-08-30T08:03:49Z) - Exploring Continual Learning for Code Generation Models [80.78036093054855]
継続的学習(CL)は、コードドメインの中でまだ過小評価されていない重要な側面である。
コード生成,翻訳,要約,改良など,幅広いタスクをカバーするCodeTask-CLというベンチマークを導入する。
即時選択機構の不安定な訓練により,プロンプトプール (PP) などの有効手法が破滅的な忘れ込みに悩まされることが判明した。
論文 参考訳(メタデータ) (2023-07-05T16:58:39Z) - A Static Evaluation of Code Completion by Large Language Models [65.18008807383816]
単純なプログラミング問題に対するモデル生成コードの機能的正当性を評価するために,実行ベースベンチマークが提案されている。
プログラムを実行せずにエラーを検出するlinterのような静的解析ツールは、コード生成モデルを評価するために十分に研究されていない。
抽象構文木を利用して,Pythonのコード補完における静的エラーを定量化する静的評価フレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-05T19:23:34Z) - On Reinforcement Learning, Effect Handlers, and the State Monad [0.0]
本研究では,機能プログラムにおける意思決定抽象化を支援する手段として,エフェクトとハンドラについて検討する。
我々は,これらの操作のハンドラセットとして実装された強化学習アルゴリズムとして,その基盤となるインテリジェンスを表現している。
我々は、タイプとエフェクトハンドラがいかに安全性を確保できるかを示唆することで結論付けた。
論文 参考訳(メタデータ) (2022-03-29T10:46:58Z) - Leveraging Language to Learn Program Abstractions and Search Heuristics [66.28391181268645]
LAPS(Language for Abstraction and Program Search)は、自然言語アノテーションを用いて、ライブラリとニューラルネットワークによる合成のための検索モデルの共同学習をガイドする手法である。
最先端のライブラリ学習システム(DreamCoder)に統合されると、LAPSは高品質なライブラリを生成し、検索効率と一般化を改善する。
論文 参考訳(メタデータ) (2021-06-18T15:08:47Z) - A Composable Specification Language for Reinforcement Learning Tasks [23.08652058034537]
本稿では,複雑な制御タスクを特定するための言語と,言語仕様を報酬関数にコンパイルし,報酬形成を自動的に行うアルゴリズムを提案する。
我々は、SPECTRLと呼ばれるツールにアプローチを実装し、最先端のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-08-21T03:40:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。