Score-PA: Score-based 3D Part Assembly
- URL: http://arxiv.org/abs/2309.04220v1
- Date: Fri, 8 Sep 2023 09:10:03 GMT
- Title: Score-PA: Score-based 3D Part Assembly
- Authors: Junfeng Cheng, Mingdong Wu, Ruiyuan Zhang, Guanqi Zhan, Chao Wu, Hao
Dong
- Abstract summary: We introduce the Score-based 3D Part Assembly framework (Score-PA) for 3D part assembly.
Knowing that score-based methods are typically time-consuming during the inference stage.
We introduce a novel algorithm called the Fast Predictor-Corrector Sampler (FPC) that accelerates the sampling process.
- Score: 6.25037277839849
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous 3D part assembly is a challenging task in the areas of robotics
and 3D computer vision. This task aims to assemble individual components into a
complete shape without relying on predefined instructions. In this paper, we
formulate this task from a novel generative perspective, introducing the
Score-based 3D Part Assembly framework (Score-PA) for 3D part assembly. Knowing
that score-based methods are typically time-consuming during the inference
stage. To address this issue, we introduce a novel algorithm called the Fast
Predictor-Corrector Sampler (FPC) that accelerates the sampling process within
the framework. We employ various metrics to assess assembly quality and
diversity, and our evaluation results demonstrate that our algorithm
outperforms existing state-of-the-art approaches. We release our code at
https://github.com/J-F-Cheng/Score-PA_Score-based-3D-Part-Assembly.
Related papers
- 3D Geometric Shape Assembly via Efficient Point Cloud Matching [59.241448711254485]
We introduce Proxy Match Transform (PMT), an approximate high-order feature transform layer that enables reliable matching between mating surfaces of parts.
Building upon PMT, we introduce a new framework, dubbed Proxy Match TransformeR (PMTR), for the geometric assembly task.
We evaluate the proposed PMTR on the large-scale 3D geometric shape assembly benchmark dataset of Breaking Bad.
arXiv Detail & Related papers (2024-07-15T08:50:02Z) - AutoInst: Automatic Instance-Based Segmentation of LiDAR 3D Scans [41.17467024268349]
Making sense of 3D environments requires fine-grained scene understanding.
We propose to predict instance segmentations for 3D scenes in an unsupervised way.
Our approach attains 13.3% higher Average Precision and 9.1% higher F1 score compared to the best-performing baseline.
arXiv Detail & Related papers (2024-03-24T22:53:16Z) - SAI3D: Segment Any Instance in 3D Scenes [68.57002591841034]
We introduce SAI3D, a novel zero-shot 3D instance segmentation approach.
Our method partitions a 3D scene into geometric primitives, which are then progressively merged into 3D instance segmentations.
Empirical evaluations on ScanNet, Matterport3D and the more challenging ScanNet++ datasets demonstrate the superiority of our approach.
arXiv Detail & Related papers (2023-12-17T09:05:47Z) - 3D Video Object Detection with Learnable Object-Centric Global
Optimization [65.68977894460222]
Correspondence-based optimization is the cornerstone for 3D scene reconstruction but is less studied in 3D video object detection.
We propose BA-Det, an end-to-end optimizable object detector with object-centric temporal correspondence learning and featuremetric object bundle adjustment.
arXiv Detail & Related papers (2023-03-27T17:39:39Z) - AOP-Net: All-in-One Perception Network for Joint LiDAR-based 3D Object
Detection and Panoptic Segmentation [9.513467995188634]
AOP-Net is a LiDAR-based multi-task framework that combines 3D object detection and panoptic segmentation.
The AOP-Net achieves state-of-the-art performance for published works on the nuScenes benchmark for both 3D object detection and panoptic segmentation tasks.
arXiv Detail & Related papers (2023-02-02T05:31:53Z) - CMR3D: Contextualized Multi-Stage Refinement for 3D Object Detection [57.44434974289945]
We propose Contextualized Multi-Stage Refinement for 3D Object Detection (CMR3D) framework.
Our framework takes a 3D scene as input and strives to explicitly integrate useful contextual information of the scene.
In addition to 3D object detection, we investigate the effectiveness of our framework for the problem of 3D object counting.
arXiv Detail & Related papers (2022-09-13T05:26:09Z) - RBGNet: Ray-based Grouping for 3D Object Detection [104.98776095895641]
We propose the RBGNet framework, a voting-based 3D detector for accurate 3D object detection from point clouds.
We propose a ray-based feature grouping module, which aggregates the point-wise features on object surfaces using a group of determined rays.
Our model achieves state-of-the-art 3D detection performance on ScanNet V2 and SUN RGB-D with remarkable performance gains.
arXiv Detail & Related papers (2022-04-05T14:42:57Z) - From 2D to 3D: Re-thinking Benchmarking of Monocular Depth Prediction [80.67873933010783]
We argue that MDP is currently witnessing benchmark over-fitting and relying on metrics that are only partially helpful to gauge the usefulness of the predictions for 3D applications.
This limits the design and development of novel methods that are truly aware of - and improving towards estimating - the 3D structure of the scene rather than optimizing 2D-based distances.
We propose a set of metrics well suited to evaluate the 3D geometry of MDP approaches and a novel indoor benchmark, RIO-D3D, crucial for the proposed evaluation methodology.
arXiv Detail & Related papers (2022-03-15T17:50:54Z) - ICM-3D: Instantiated Category Modeling for 3D Instance Segmentation [19.575077449759377]
We propose ICM-3D, a single-step method to segment 3D instances via instantiated categorization.
We conduct extensive experiments to verify the effectiveness of ICM-3D and show that it obtains inspiring performance across multiple frameworks, backbones and benchmarks.
arXiv Detail & Related papers (2021-08-26T13:08:37Z) - Generative 3D Part Assembly via Dynamic Graph Learning [34.108515032411695]
Part assembly is a challenging yet crucial task in 3D computer vision and robotics.
We propose an assembly-oriented dynamic graph learning framework that leverages an iterative graph neural network as a backbone.
arXiv Detail & Related papers (2020-06-14T04:26:42Z) - Learning 3D Part Assembly from a Single Image [20.175502864488493]
We introduce a novel problem, single-image-guided 3D part assembly, along with a learningbased solution.
We study this problem in the setting of furniture assembly from a given complete set of parts and a single image depicting the entire assembled object.
arXiv Detail & Related papers (2020-03-21T21:19:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.