Quantum dots for photonic quantum information technology
- URL: http://arxiv.org/abs/2309.04229v1
- Date: Fri, 8 Sep 2023 09:34:49 GMT
- Title: Quantum dots for photonic quantum information technology
- Authors: Tobias Heindel, Je-Hyung Kim, Niels Gregersen, Armando Rastelli,
Stephan Reitzenstein
- Abstract summary: We discuss in depth the great potential of quantum dots (QDs) in photonic quantum information technology.
QDs form a key resource for the implementation of quantum communication networks and photonic quantum computers.
We present the most promising concepts for quantum light sources and photonic quantum circuits that include single QDs as active elements.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The generation, manipulation, storage, and detection of single photons play a
central role in emerging photonic quantum information technology. Individual
photons serve as flying qubits and transmit the quantum information at high
speed and with low losses, for example between individual nodes of quantum
networks. Due to the laws of quantum mechanics, quantum communication is
fundamentally tap-proof, which explains the enormous interest in this modern
information technology. On the other hand, stationary qubits or photonic states
in quantum computers can potentially lead to enormous increases in performance
through parallel data processing, to outperform classical computers in specific
tasks when quantum advantage is achieved. Here, we discuss in depth the great
potential of quantum dots (QDs) in photonic quantum information technology. In
this context, QDs form a key resource for the implementation of quantum
communication networks and photonic quantum computers because they can generate
single photons on-demand. Moreover, QDs are compatible with the mature
semiconductor technology, so that they can be integrated comparatively easily
into nanophotonic structures, which form the basis for quantum light sources
and integrated photonic quantum circuits. After a thematic introduction, we
present modern numerical methods and theoretical approaches to device design
and the physical description of quantum dot devices. We then present modern
methods and technical solutions for the epitaxial growth and for the
deterministic nanoprocessing of quantum devices based on QDs. Furthermore, we
present the most promising concepts for quantum light sources and photonic
quantum circuits that include single QDs as active elements and discuss
applications of these novel devices in photonic quantum information technology.
We close with an overview of open issues and an outlook on future developments.
Related papers
- Information processing at the speed of light [0.0]
The introduction of quantum photonic chips has ushered in an era marked by scalability, stability, and cost-effectiveness.
This article provides a comprehensive exploration of photonic quantum computing, covering key aspects such as encoding information in photons.
The review further navigates the path towards establishing scalable and fault-tolerant photonic quantum computers.
arXiv Detail & Related papers (2024-10-01T06:43:44Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum Optical Memory for Entanglement Distribution [52.77024349608834]
Entanglement of quantum states over long distances can empower quantum computing, quantum communications, and quantum sensing.
Over the past two decades, quantum optical memories with high fidelity, high efficiencies, long storage times, and promising multiplexing capabilities have been developed.
arXiv Detail & Related papers (2023-04-19T03:18:51Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Dynamical photon-photon interaction mediated by a quantum emitter [1.9677315976601693]
Single photons constitute a main platform in quantum science and technology.
Main challenge in quantum photonics is how to generate advanced entangled resource states and efficient light-matter interfaces.
We utilize the efficient and coherent coupling of a single quantum emitter to a nanophotonic waveguide for realizing quantum nonlinear interaction between single-photon wavepackets.
arXiv Detail & Related papers (2021-12-13T17:33:30Z) - Quantum Communication Using Semiconductor Quantum Dots [0.0]
Review focuses on implementations of, and building blocks for, quantum communication using quantum-light sources based on epitaxial semiconductor quantum dots.
Recent progress towards quantum-secured communication networks as well as building blocks thereof is summarized.
arXiv Detail & Related papers (2021-08-31T14:32:34Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
Advances in isolating, controlling and entangling quantum systems are transforming what was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and technological progress.
From the perspective of three domain science theorists, this article compiles thoughts about the interface on entanglement, complexity, and quantum simulation.
arXiv Detail & Related papers (2021-07-10T06:12:06Z) - Single-photon quantum hardware: towards scalable photonic quantum
technology with a quantum advantage [0.41998444721319217]
We will present the current state-of-the-art in single-photon quantum hardware and the main photonic building blocks required in order to scale up.
We will point out specific promising applications of the hardware building blocks within quantum communication and photonic quantum computing.
arXiv Detail & Related papers (2021-03-01T16:22:59Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z) - Hybrid device for quantum nanophotonics [0.0]
Single photons, entangled photons and quantum light in general have been coupled to integrated approaches coming from classical optics.
In this article, we describe our recent advances using elongated optical nano-fibers.
We also present our latest results on nanocrystals made of perovskites and discuss some of their quantum properties.
arXiv Detail & Related papers (2020-01-28T17:37:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.