Quantum Communication Using Semiconductor Quantum Dots
- URL: http://arxiv.org/abs/2108.13877v1
- Date: Tue, 31 Aug 2021 14:32:34 GMT
- Title: Quantum Communication Using Semiconductor Quantum Dots
- Authors: Daniel A. Vajner, Lucas Rickert, Timm Gao, Koray Kaymazlar, and Tobias
Heindel
- Abstract summary: Review focuses on implementations of, and building blocks for, quantum communication using quantum-light sources based on epitaxial semiconductor quantum dots.
Recent progress towards quantum-secured communication networks as well as building blocks thereof is summarized.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Worldwide enormous efforts are directed towards the development of the
so-called quantum internet. Turning this long sought-after dream into reality
is a great challenge that will require breakthroughs in quantum communication
and computing. To establish a global, quantum-secured communication
infrastructure, photonic quantum technologies will doubtlessly play a major
role, by providing and interfacing essential quantum resources, e.g., flying-
and stationary qubits or quantum memories. Over the last decade, significant
progress has been made in the engineering of on-demand quantum light sources
based on semiconductor quantum dots, which enable the generation of
close-to-ideal single- and entangled-photon states, useful for quantum
cryptography tasks. This review focuses on implementations of, and building
blocks for, quantum communication using quantum-light sources based on
epitaxial semiconductor quantum dots. After reviewing the main notions of
quantum cryptography (section 1) and introducing the devices used for
single-photon and entangled-photon generation (section 2), it provides an
overview of experimental implementations of cryptographic protocols using
quantum dot based quantum light sources (section 3). Furthermore, recent
progress towards quantum-secured communication networks as well as building
blocks thereof is summarized (section 4). The article closes with an outlook,
discussing future perspectives in the field and identifying the main challenges
to be solved.
Related papers
- Quantum Teleportation with Telecom Photons from Remote Quantum Emitters [0.0]
The quest for a global quantum internet is based on the realization of a scalable network which requires quantum hardware with exceptional performance.
Here we realize full-photonic quantum teleportation employing one of the most promising platforms, i.e. semiconductor quantum dots.
The frequency mismatch between the triggered sources is erased using two polarization-preserving quantum frequency converters.
arXiv Detail & Related papers (2024-11-19T22:42:36Z) - Quantum dots for photonic quantum information technology [0.0]
We discuss in depth the great potential of quantum dots (QDs) in photonic quantum information technology.
QDs form a key resource for the implementation of quantum communication networks and photonic quantum computers.
We present the most promising concepts for quantum light sources and photonic quantum circuits that include single QDs as active elements.
arXiv Detail & Related papers (2023-09-08T09:34:49Z) - Entanglement-Assisted Quantum Networks: Mechanics, Enabling
Technologies, Challenges, and Research Directions [66.27337498864556]
This paper presents a comprehensive survey of entanglement-assisted quantum networks.
It provides a detailed overview of the network structure, working principles, and development stages.
It also emphasizes open research directions, including architecture design, entanglement-based network issues, and standardization.
arXiv Detail & Related papers (2023-07-24T02:48:22Z) - Quantum Optical Memory for Entanglement Distribution [52.77024349608834]
Entanglement of quantum states over long distances can empower quantum computing, quantum communications, and quantum sensing.
Over the past two decades, quantum optical memories with high fidelity, high efficiencies, long storage times, and promising multiplexing capabilities have been developed.
arXiv Detail & Related papers (2023-04-19T03:18:51Z) - Quantum Semantic Communications for Resource-Efficient Quantum Networking [52.3355619190963]
This letter proposes a novel quantum semantic communications (QSC) framework exploiting advancements in quantum machine learning and quantum semantic representations.
The proposed framework achieves approximately 50-75% reduction in quantum communication resources needed, while achieving a higher quantum semantic fidelity.
arXiv Detail & Related papers (2022-05-05T03:49:19Z) - Realizing quantum nodes in space for cost-effective, global quantum
communication: in-orbit results and next steps [94.08853042978113]
SpooQy-1 is a satellite developed at the Centre for Quantum Technologies.
It has successfully demonstrated the operation of an entangled photon pair source on a resource-constrained CubeSat platform.
arXiv Detail & Related papers (2021-04-22T02:59:23Z) - Quantum dot technology for quantum repeaters: from entangled photon
generation towards the integration with quantum memories [0.0]
We focus on memory-based quantum-repeater schemes that rely on semiconductor quantum dots for the generation of polarization entangled photons.
We offer a perspective on integration with quantum memories, both highlighting preliminary works on natural-artificial atomic interfaces.
To complete the overview, we also present recent implementations of entanglement-based quantum communication protocols with quantum dots.
arXiv Detail & Related papers (2021-04-14T18:41:01Z) - Single-photon quantum hardware: towards scalable photonic quantum
technology with a quantum advantage [0.41998444721319217]
We will present the current state-of-the-art in single-photon quantum hardware and the main photonic building blocks required in order to scale up.
We will point out specific promising applications of the hardware building blocks within quantum communication and photonic quantum computing.
arXiv Detail & Related papers (2021-03-01T16:22:59Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z) - Quantum key distribution with entangled photons generated on-demand by a
quantum dot [0.0]
Entanglement-based protocols offer additional layers of security and scale favorably with quantum repeaters.
We experimentally demonstrate a modified Ekert quantum key distribution protocol with two quantum channel approaches.
Our field study highlights that quantum-dot entangled-photon sources are ready to go beyond laboratory experiments.
arXiv Detail & Related papers (2020-07-24T18:21:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.