COVID-19 Detection System: A Comparative Analysis of System Performance Based on Acoustic Features of Cough Audio Signals
- URL: http://arxiv.org/abs/2309.04505v2
- Date: Wed, 19 Jun 2024 03:51:04 GMT
- Title: COVID-19 Detection System: A Comparative Analysis of System Performance Based on Acoustic Features of Cough Audio Signals
- Authors: Asmaa Shati, Ghulam Mubashar Hassan, Amitava Datta,
- Abstract summary: This research aims to explore various acoustic features that enhance the performance of machine learning (ML) models in detecting COVID-19 from cough signals.
It investigates the efficacy of three feature extraction techniques, including Mel Frequency Cepstral Coefficients (MFCC), Chroma, and Spectral Contrast features, when applied to two machine learning algorithms, Support Vector Machine (SVM) and Multilayer Perceptron (MLP)
The proposed system provides a practical solution and demonstrates state-of-the-art classification performance, with an AUC of 0.843 on the COUGHVID dataset and 0.953 on the Virufy
- Score: 0.6963971634605796
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A wide range of respiratory diseases, such as cold and flu, asthma, and COVID-19, affect people's daily lives worldwide. In medical practice, respiratory sounds are widely used in medical services to diagnose various respiratory illnesses and lung disorders. The traditional diagnosis of such sounds requires specialized knowledge, which can be costly and reliant on human expertise. Despite this, recent advancements, such as cough audio recordings, have emerged as a means to automate the detection of respiratory conditions. Therefore, this research aims to explore various acoustic features that enhance the performance of machine learning (ML) models in detecting COVID-19 from cough signals. It investigates the efficacy of three feature extraction techniques, including Mel Frequency Cepstral Coefficients (MFCC), Chroma, and Spectral Contrast features, when applied to two machine learning algorithms, Support Vector Machine (SVM) and Multilayer Perceptron (MLP), and therefore proposes an efficient CovCepNet detection system. The proposed system provides a practical solution and demonstrates state-of-the-art classification performance, with an AUC of 0.843 on the COUGHVID dataset and 0.953 on the Virufy dataset for COVID-19 detection from cough audio signals.
Related papers
- Towards reliable respiratory disease diagnosis based on cough sounds and vision transformers [14.144599890583308]
We propose a novel approach to cough-based disease classification based on both self-supervised and supervised learning on a large-scale cough data set.
Experimental results demonstrate our proposed approach outperforms prior arts consistently on two benchmark datasets for COVID-19 diagnosis and a proprietary dataset for COPD/non-COPD classification with an AUROC of 92.5%.
arXiv Detail & Related papers (2024-08-28T09:40:40Z) - Real-Time Magnetic Tracking and Diagnosis of COVID-19 via Machine
Learning [2.737411991771932]
The COVID-19 pandemic underscored the importance of reliable, noninvasive diagnostic tools for robust public health interventions.
In this work, we fused magnetic respiratory sensing technology (MRST) with machine learning (ML) to create a diagnostic platform for real-time tracking and diagnosis of COVID-19 and other respiratory diseases.
arXiv Detail & Related papers (2023-11-01T13:57:33Z) - COVID-19 Detection from Respiratory Sounds with Hierarchical Spectrogram
Transformers [1.4091863292043447]
We introduce a novel deep learning approach to distinguish patients with COVID-19 from healthy controls given audio recordings of cough or breathing sounds.
The proposed approach leverages a novel hierarchical spectrogram transformer (HST) on spectrogram representations of respiratory sounds.
HST embodies self-attention mechanisms over local windows in spectrograms, and window size is progressively grown over model stages to capture local to global context.
arXiv Detail & Related papers (2022-07-19T19:55:16Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Fused Audio Instance and Representation for Respiratory Disease
Detection [0.6827423171182154]
We propose Fused Audio Instance and Representation (FAIR) as a method for respiratory disease detection.
We conducted experiments on the use case of COVID-19 detection by combining waveform and spectrogram representation of body sounds.
arXiv Detail & Related papers (2022-04-22T09:01:29Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Cough Detection Using Selected Informative Features from Audio Signals [24.829135966052142]
The models are trained by the dataset combined ESC-50 dataset with self-recorded cough recordings.
The best cough detection model realizes the accuracy, recall, precision and F1-score with 94.9%, 97.1%, 93.1% and 0.95 respectively.
arXiv Detail & Related papers (2021-08-07T23:05:18Z) - Project Achoo: A Practical Model and Application for COVID-19 Detection
from Recordings of Breath, Voice, and Cough [55.45063681652457]
We propose a machine learning method to quickly triage COVID-19 using recordings made on consumer devices.
The approach combines signal processing methods with fine-tuned deep learning networks and provides methods for signal denoising, cough detection and classification.
We have also developed and deployed a mobile application that uses symptoms checker together with voice, breath and cough signals to detect COVID-19 infection.
arXiv Detail & Related papers (2021-07-12T08:07:56Z) - Quantification of pulmonary involvement in COVID-19 pneumonia by means
of a cascade oftwo U-nets: training and assessment on multipledatasets using
different annotation criteria [83.83783947027392]
This study aims at exploiting Artificial intelligence (AI) for the identification, segmentation and quantification of COVID-19 pulmonary lesions.
We developed an automated analysis pipeline, the LungQuant system, based on a cascade of two U-nets.
The accuracy in predicting the CT-Severity Score (CT-SS) of the LungQuant system has been also evaluated.
arXiv Detail & Related papers (2021-05-06T10:21:28Z) - Detecting COVID-19 from Breathing and Coughing Sounds using Deep Neural
Networks [68.8204255655161]
We adapt an ensemble of Convolutional Neural Networks to classify if a speaker is infected with COVID-19 or not.
Ultimately, it achieves an Unweighted Average Recall (UAR) of 74.9%, or an Area Under ROC Curve (AUC) of 80.7% by ensembling neural networks.
arXiv Detail & Related papers (2020-12-29T01:14:17Z) - Respiratory Sound Classification Using Long-Short Term Memory [62.997667081978825]
This paper examines the difficulties that exist when attempting to perform sound classification as it relates to respiratory disease classification.
An examination on the use of deep learning and long short-term memory networks is performed in order to identify how such a task can be implemented.
arXiv Detail & Related papers (2020-08-06T23:11:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.