Towards reliable respiratory disease diagnosis based on cough sounds and vision transformers
- URL: http://arxiv.org/abs/2408.15667v2
- Date: Tue, 3 Sep 2024 03:22:18 GMT
- Title: Towards reliable respiratory disease diagnosis based on cough sounds and vision transformers
- Authors: Qian Wang, Zhaoyang Bu, Jiaxuan Mao, Wenyu Zhu, Jingya Zhao, Wei Du, Guochao Shi, Min Zhou, Si Chen, Jieming Qu,
- Abstract summary: We propose a novel approach to cough-based disease classification based on both self-supervised and supervised learning on a large-scale cough data set.
Experimental results demonstrate our proposed approach outperforms prior arts consistently on two benchmark datasets for COVID-19 diagnosis and a proprietary dataset for COPD/non-COPD classification with an AUROC of 92.5%.
- Score: 14.144599890583308
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in deep learning techniques have sparked performance boosts in various real-world applications including disease diagnosis based on multi-modal medical data. Cough sound data-based respiratory disease (e.g., COVID-19 and Chronic Obstructive Pulmonary Disease) diagnosis has also attracted much attention. However, existing works usually utilise traditional machine learning or deep models of moderate scales. On the other hand, the developed approaches are trained and evaluated on small-scale data due to the difficulty of curating and annotating clinical data on scale. To address these issues in prior works, we create a unified framework to evaluate various deep models from lightweight Convolutional Neural Networks (e.g., ResNet18) to modern vision transformers and compare their performance in respiratory disease classification. Based on the observations from such an extensive empirical study, we propose a novel approach to cough-based disease classification based on both self-supervised and supervised learning on a large-scale cough data set. Experimental results demonstrate our proposed approach outperforms prior arts consistently on two benchmark datasets for COVID-19 diagnosis and a proprietary dataset for COPD/non-COPD classification with an AUROC of 92.5%.
Related papers
- Advancing Diagnostic Precision: Leveraging Machine Learning Techniques
for Accurate Detection of Covid-19, Pneumonia, and Tuberculosis in Chest
X-Ray Images [0.0]
Lung diseases such as COVID-19, tuberculosis (TB), and pneumonia continue to be serious global health concerns.
Paramedics and scientists are working intensively to create a reliable and precise approach for early-stage COVID-19 diagnosis.
arXiv Detail & Related papers (2023-10-09T18:38:49Z) - Respiratory Disease Classification and Biometric Analysis Using Biosignals from Digital Stethoscopes [3.2458203725405976]
This work presents a novel approach leveraging digital stethoscope technology for automatic respiratory disease classification and biometric analysis.
By leveraging one of the largest publicly available medical database of respiratory sounds, we train machine learning models to classify various respiratory health conditions.
Our approach achieves high accuracy in both binary classification (89% balanced accuracy for healthy vs. diseased) and multi-class classification (72% balanced accuracy for specific diseases like pneumonia and COPD)
arXiv Detail & Related papers (2023-09-12T23:54:00Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
The scarcity of labeled data for related diseases poses a huge challenge to an accurate diagnosis.
We propose a novel deep reinforcement learning framework, which introduces prior knowledge to direct the learning of diagnostic agents.
Our approach's performance was demonstrated using the well-known NIHX-ray 14 and CheXpert datasets.
arXiv Detail & Related papers (2023-06-02T01:46:31Z) - Patch-Mix Contrastive Learning with Audio Spectrogram Transformer on
Respiratory Sound Classification [19.180927437627282]
We introduce a novel and effective Patch-Mix Contrastive Learning to distinguish the mixed representations in the latent space.
Our method achieves state-of-the-art performance on the ICBHI dataset, outperforming the prior leading score by an improvement of 4.08%.
arXiv Detail & Related papers (2023-05-23T13:04:07Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
We adopted an approach based on using an ensemble of deep convolutionalneural networks for segmentation of lung CT scans.
Using our models we are able to segment the lesions, evaluatepatients dynamics, estimate relative volume of lungs affected by lesions and evaluate the lung damage stage.
arXiv Detail & Related papers (2021-05-25T12:06:55Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Pinball-OCSVM for early-stage COVID-19 diagnosis with limited
posteroanterior chest X-ray images [3.4935179780034247]
This research proposes a novel pinball loss function based one-class support vector machine (PB-OCSVM) that can work in presence of limited COVID-19 positive CXR samples.
The performance of the proposed model is compared with conventional OCSVM and existing deep learning models, and the experimental results prove that the proposed model outperformed over state-of-the-art methods.
arXiv Detail & Related papers (2020-10-16T02:34:15Z) - Predicting Clinical Diagnosis from Patients Electronic Health Records
Using BERT-based Neural Networks [62.9447303059342]
We show the importance of this problem in medical community.
We present a modification of Bidirectional Representations from Transformers (BERT) model for classification sequence.
We use a large-scale Russian EHR dataset consisting of about 4 million unique patient visits.
arXiv Detail & Related papers (2020-07-15T09:22:55Z) - Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent
Multi-View Representation Learning [48.05232274463484]
Recently, the outbreak of Coronavirus Disease 2019 (COVID-19) has spread rapidly across the world.
Due to the large number of affected patients and heavy labor for doctors, computer-aided diagnosis with machine learning algorithm is urgently needed.
In this study, we propose to conduct the diagnosis of COVID-19 with a series of features extracted from CT images.
arXiv Detail & Related papers (2020-05-06T15:19:15Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
We present a deep learning framework that enables robust modeling in challenging scenarios.
Our results show that using 85% lesser labeled data, we can build predictive models that match the performance of classifiers trained in a large-scale data setting.
arXiv Detail & Related papers (2020-05-03T02:36:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.