Self-optimizing Feature Generation via Categorical Hashing
Representation and Hierarchical Reinforcement Crossing
- URL: http://arxiv.org/abs/2309.04612v2
- Date: Thu, 14 Sep 2023 16:56:50 GMT
- Title: Self-optimizing Feature Generation via Categorical Hashing
Representation and Hierarchical Reinforcement Crossing
- Authors: Wangyang Ying, Dongjie Wang, Kunpeng Liu, Leilei Sun, Yanjie Fu
- Abstract summary: We propose a principled and generic representation-crossing framework to solve self-optimizing feature generation.
We present extensive experimental results to demonstrate the effectiveness and efficiency of the proposed method.
- Score: 37.73656271138515
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Feature generation aims to generate new and meaningful features to create a
discriminative representation space.A generated feature is meaningful when the
generated feature is from a feature pair with inherent feature interaction. In
the real world, experienced data scientists can identify potentially useful
feature-feature interactions, and generate meaningful dimensions from an
exponentially large search space, in an optimal crossing form over an optimal
generation path. But, machines have limited human-like abilities.We generalize
such learning tasks as self-optimizing feature generation. Self-optimizing
feature generation imposes several under-addressed challenges on existing
systems: meaningful, robust, and efficient generation. To tackle these
challenges, we propose a principled and generic representation-crossing
framework to solve self-optimizing feature generation.To achieve hashing
representation, we propose a three-step approach: feature discretization,
feature hashing, and descriptive summarization. To achieve reinforcement
crossing, we develop a hierarchical reinforcement feature crossing approach.We
present extensive experimental results to demonstrate the effectiveness and
efficiency of the proposed method. The code is available at
https://github.com/yingwangyang/HRC_feature_cross.git.
Related papers
- GSSF: Generalized Structural Sparse Function for Deep Cross-modal Metric Learning [51.677086019209554]
We propose a Generalized Structural Sparse to capture powerful relationships across modalities for pair-wise similarity learning.
The distance metric delicately encapsulates two formats of diagonal and block-diagonal terms.
Experiments on cross-modal and two extra uni-modal retrieval tasks have validated its superiority and flexibility.
arXiv Detail & Related papers (2024-10-20T03:45:50Z) - A Refreshed Similarity-based Upsampler for Direct High-Ratio Feature Upsampling [54.05517338122698]
We propose an explicitly controllable query-key feature alignment from both semantic-aware and detail-aware perspectives.
We also develop a fine-grained neighbor selection strategy on HR features, which is simple yet effective for alleviating mosaic artifacts.
Our proposed ReSFU framework consistently achieves satisfactory performance on different segmentation applications.
arXiv Detail & Related papers (2024-07-02T14:12:21Z) - Neuro-Symbolic Embedding for Short and Effective Feature Selection via Autoregressive Generation [22.87577374767465]
We reformulate feature selection through a neuro-symbolic lens and introduce a novel generative framework aimed at identifying short and effective feature subsets.
In this framework, we first create a data collector to automatically collect numerous feature selection samples consisting of feature ID tokens, model performance, and the measurement of feature subset redundancy.
Building on the collected data, an encoder-decoder-evaluator learning paradigm is developed to preserve the intelligence of feature selection into a continuous embedding space for efficient search.
arXiv Detail & Related papers (2024-04-26T05:01:08Z) - Unifying Feature and Cost Aggregation with Transformers for Semantic and Visual Correspondence [51.54175067684008]
This paper introduces a Transformer-based integrative feature and cost aggregation network designed for dense matching tasks.
We first show that feature aggregation and cost aggregation exhibit distinct characteristics and reveal the potential for substantial benefits stemming from the judicious use of both aggregation processes.
Our framework is evaluated on standard benchmarks for semantic matching, and also applied to geometric matching, where we show that our approach achieves significant improvements compared to existing methods.
arXiv Detail & Related papers (2024-03-17T07:02:55Z) - Towards Hybrid-grained Feature Interaction Selection for Deep Sparse
Network [18.759101407874507]
We introduce a hybrid-grained feature interaction selection approach that targets both feature field and feature value for deep sparse networks.
We develop a selection algorithm called OptFeature, which efficiently selects the feature interaction from both the feature field and the feature value simultaneously.
arXiv Detail & Related papers (2023-10-23T20:15:30Z) - Feature Interaction Aware Automated Data Representation Transformation [27.26916497306978]
We develop a hierarchical reinforcement learning structure with cascading Markov Decision Processes to automate feature and operation selection.
We reward agents based on the interaction strength between selected features, resulting in intelligent and efficient exploration of the feature space that emulates human decision-making.
arXiv Detail & Related papers (2023-09-29T06:48:16Z) - Traceable Group-Wise Self-Optimizing Feature Transformation Learning: A
Dual Optimization Perspective [33.45878576396101]
Feature transformation aims to reconstruct an effective representation space by mathematically refining the existing features.
Existing research predominantly focuses on domain knowledge-based feature engineering or learning latent representations.
Our initial work took a pioneering step towards this challenge by introducing a novel self-optimizing framework.
arXiv Detail & Related papers (2023-06-29T12:29:21Z) - Dynamic Perceiver for Efficient Visual Recognition [87.08210214417309]
We propose Dynamic Perceiver (Dyn-Perceiver) to decouple the feature extraction procedure and the early classification task.
A feature branch serves to extract image features, while a classification branch processes a latent code assigned for classification tasks.
Early exits are placed exclusively within the classification branch, thus eliminating the need for linear separability in low-level features.
arXiv Detail & Related papers (2023-06-20T03:00:22Z) - Group-wise Reinforcement Feature Generation for Optimal and Explainable
Representation Space Reconstruction [25.604176830832586]
We reformulate representation space reconstruction into an interactive process of nested feature generation and selection.
We design a group-wise generation strategy to cross a feature group, an operation, and another feature group to generate new features.
We present extensive experiments to demonstrate the effectiveness, efficiency, traceability, and explicitness of our system.
arXiv Detail & Related papers (2022-05-28T21:34:14Z) - Correlation-Aware Deep Tracking [83.51092789908677]
We propose a novel target-dependent feature network inspired by the self-/cross-attention scheme.
Our network deeply embeds cross-image feature correlation in multiple layers of the feature network.
Our model can be flexibly pre-trained on abundant unpaired images, leading to notably faster convergence than the existing methods.
arXiv Detail & Related papers (2022-03-03T11:53:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.