Exploring Robust Features for Improving Adversarial Robustness
- URL: http://arxiv.org/abs/2309.04650v1
- Date: Sat, 9 Sep 2023 00:30:04 GMT
- Title: Exploring Robust Features for Improving Adversarial Robustness
- Authors: Hong Wang, Yuefan Deng, Shinjae Yoo, Yuewei Lin
- Abstract summary: We explore the robust features which are not affected by the adversarial perturbations to improve the model's adversarial robustness.
Specifically, we propose a feature disentanglement model to segregate the robust features from non-robust features and domain specific features.
The trained domain discriminator is able to identify the domain specific features from the clean images and adversarial examples almost perfectly.
- Score: 11.935612873688122
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While deep neural networks (DNNs) have revolutionized many fields, their
fragility to carefully designed adversarial attacks impedes the usage of DNNs
in safety-critical applications. In this paper, we strive to explore the robust
features which are not affected by the adversarial perturbations, i.e.,
invariant to the clean image and its adversarial examples, to improve the
model's adversarial robustness. Specifically, we propose a feature
disentanglement model to segregate the robust features from non-robust features
and domain specific features. The extensive experiments on four widely used
datasets with different attacks demonstrate that robust features obtained from
our model improve the model's adversarial robustness compared to the
state-of-the-art approaches. Moreover, the trained domain discriminator is able
to identify the domain specific features from the clean images and adversarial
examples almost perfectly. This enables adversarial example detection without
incurring additional computational costs. With that, we can also specify
different classifiers for clean images and adversarial examples, thereby
avoiding any drop in clean image accuracy.
Related papers
- MOREL: Enhancing Adversarial Robustness through Multi-Objective Representation Learning [1.534667887016089]
deep neural networks (DNNs) are vulnerable to slight adversarial perturbations.
We show that strong feature representation learning during training can significantly enhance the original model's robustness.
We propose MOREL, a multi-objective feature representation learning approach, encouraging classification models to produce similar features for inputs within the same class, despite perturbations.
arXiv Detail & Related papers (2024-10-02T16:05:03Z) - Improving Adversarial Robustness via Feature Pattern Consistency Constraint [42.50500608175905]
Convolutional Neural Networks (CNNs) are well-known for their vulnerability to adversarial attacks, posing significant security concerns.
Most existing methods either focus on learning from adversarial perturbations, leading to overfitting to the adversarial examples, or aim to eliminate such perturbations during inference.
We introduce a novel and effective Feature Pattern Consistency Constraint (FPCC) method to reinforce the latent feature's capacity to maintain the correct feature pattern.
arXiv Detail & Related papers (2024-06-13T05:38:30Z) - Mitigating Feature Gap for Adversarial Robustness by Feature
Disentanglement [61.048842737581865]
Adversarial fine-tuning methods aim to enhance adversarial robustness through fine-tuning the naturally pre-trained model in an adversarial training manner.
We propose a disentanglement-based approach to explicitly model and remove the latent features that cause the feature gap.
Empirical evaluations on three benchmark datasets demonstrate that our approach surpasses existing adversarial fine-tuning methods and adversarial training baselines.
arXiv Detail & Related papers (2024-01-26T08:38:57Z) - Spatial-Frequency Discriminability for Revealing Adversarial Perturbations [53.279716307171604]
Vulnerability of deep neural networks to adversarial perturbations has been widely perceived in the computer vision community.
Current algorithms typically detect adversarial patterns through discriminative decomposition for natural and adversarial data.
We propose a discriminative detector relying on a spatial-frequency Krawtchouk decomposition.
arXiv Detail & Related papers (2023-05-18T10:18:59Z) - Adversarial Examples Detection with Enhanced Image Difference Features
based on Local Histogram Equalization [20.132066800052712]
We propose an adversarial example detection framework based on a high-frequency information enhancement strategy.
This framework can effectively extract and amplify the feature differences between adversarial examples and normal examples.
arXiv Detail & Related papers (2023-05-08T03:14:01Z) - Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning [80.21709045433096]
A standard method in adversarial robustness assumes a framework to defend against samples crafted by minimally perturbing a sample.
We use metric learning to frame adversarial regularization as an optimal transport problem.
Our preliminary results indicate that regularizing over invariant perturbations in our framework improves both invariant and sensitivity defense.
arXiv Detail & Related papers (2022-11-04T13:54:02Z) - Robust Transferable Feature Extractors: Learning to Defend Pre-Trained
Networks Against White Box Adversaries [69.53730499849023]
We show that adversarial examples can be successfully transferred to another independently trained model to induce prediction errors.
We propose a deep learning-based pre-processing mechanism, which we refer to as a robust transferable feature extractor (RTFE)
arXiv Detail & Related papers (2022-09-14T21:09:34Z) - Adversarially-Aware Robust Object Detector [85.10894272034135]
We propose a Robust Detector (RobustDet) based on adversarially-aware convolution to disentangle gradients for model learning on clean and adversarial images.
Our model effectively disentangles gradients and significantly enhances the detection robustness with maintaining the detection ability on clean images.
arXiv Detail & Related papers (2022-07-13T13:59:59Z) - How many perturbations break this model? Evaluating robustness beyond
adversarial accuracy [28.934863462633636]
We introduce adversarial sparsity, which quantifies how difficult it is to find a successful perturbation given both an input point and a constraint on the direction of the perturbation.
We show that sparsity provides valuable insight into neural networks in multiple ways.
arXiv Detail & Related papers (2022-07-08T21:25:17Z) - Adversarial Robustness with Non-uniform Perturbations [3.804240190982695]
Prior work mainly focus on crafting adversarial examples with small uniform norm-bounded perturbations across features to maintain the requirement of imperceptibility.
Our approach can be adapted to other domains where non-uniform perturbations more accurately represent realistic adversarial examples.
arXiv Detail & Related papers (2021-02-24T00:54:43Z) - Attribute-Guided Adversarial Training for Robustness to Natural
Perturbations [64.35805267250682]
We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space.
Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations.
arXiv Detail & Related papers (2020-12-03T10:17:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.