Video and Synthetic MRI Pre-training of 3D Vision Architectures for
Neuroimage Analysis
- URL: http://arxiv.org/abs/2309.04651v1
- Date: Sat, 9 Sep 2023 00:33:23 GMT
- Title: Video and Synthetic MRI Pre-training of 3D Vision Architectures for
Neuroimage Analysis
- Authors: Nikhil J. Dhinagar, Amit Singh, Saket Ozarkar, Ketaki Buwa, Sophia I.
Thomopoulos, Conor Owens-Walton, Emily Laltoo, Yao-Liang Chen, Philip Cook,
Corey McMillan, Chih-Chien Tsai, J-J Wang, Yih-Ru Wu, Paul M. Thompson
- Abstract summary: Transfer learning involves pre-training deep learning models on a large corpus of data for adaptation to specific tasks.
We benchmarked vision transformers (ViTs) and convolutional neural networks (CNNs) with varied upstream pre-training approaches.
The resulting pre-trained models can be adapted to a range of downstream tasks, even when training data for the target task is limited.
- Score: 3.208731414009847
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transfer learning represents a recent paradigm shift in the way we build
artificial intelligence (AI) systems. In contrast to training task-specific
models, transfer learning involves pre-training deep learning models on a large
corpus of data and minimally fine-tuning them for adaptation to specific tasks.
Even so, for 3D medical imaging tasks, we do not know if it is best to
pre-train models on natural images, medical images, or even synthetically
generated MRI scans or video data. To evaluate these alternatives, here we
benchmarked vision transformers (ViTs) and convolutional neural networks
(CNNs), initialized with varied upstream pre-training approaches. These methods
were then adapted to three unique downstream neuroimaging tasks with a range of
difficulty: Alzheimer's disease (AD) and Parkinson's disease (PD)
classification, "brain age" prediction. Experimental tests led to the following
key observations: 1. Pre-training improved performance across all tasks
including a boost of 7.4% for AD classification and 4.6% for PD classification
for the ViT and 19.1% for PD classification and reduction in brain age
prediction error by 1.26 years for CNNs, 2. Pre-training on large-scale video
or synthetic MRI data boosted performance of ViTs, 3. CNNs were robust in
limited-data settings, and in-domain pretraining enhanced their performances,
4. Pre-training improved generalization to out-of-distribution datasets and
sites. Overall, we benchmarked different vision architectures, revealing the
value of pre-training them with emerging datasets for model initialization. The
resulting pre-trained models can be adapted to a range of downstream
neuroimaging tasks, even when training data for the target task is limited.
Related papers
- Domain Aware Multi-Task Pretraining of 3D Swin Transformer for T1-weighted Brain MRI [4.453300553789746]
We propose novel domain-aware multi-task learning tasks to pretrain a 3D Swin Transformer for brain magnetic resonance imaging (MRI)
Our method considers the domain knowledge in brain MRI by incorporating brain anatomy and morphology as well as standard pretext tasks adapted for 3D imaging in a contrastive learning setting.
Our method outperforms existing supervised and self-supervised methods in three downstream tasks of Alzheimer's disease classification, Parkinson's disease classification, and age prediction tasks.
arXiv Detail & Related papers (2024-10-01T05:21:02Z) - Self-Supervised Pretext Tasks for Alzheimer's Disease Classification using 3D Convolutional Neural Networks on Large-Scale Synthetic Neuroimaging Dataset [11.173478552040441]
Alzheimer's Disease (AD) induces both localised and widespread neural degenerative changes throughout the brain.
In this work, we evaluated several unsupervised methods to train a feature extractor for downstream AD vs. CN classification.
arXiv Detail & Related papers (2024-06-20T11:26:32Z) - Predicting Infant Brain Connectivity with Federated Multi-Trajectory
GNNs using Scarce Data [54.55126643084341]
Existing deep learning solutions suffer from three major limitations.
We introduce FedGmTE-Net++, a federated graph-based multi-trajectory evolution network.
Using the power of federation, we aggregate local learnings among diverse hospitals with limited datasets.
arXiv Detail & Related papers (2024-01-01T10:20:01Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Video Pretraining Advances 3D Deep Learning on Chest CT Tasks [63.879848037679224]
Pretraining on large natural image classification datasets has aided model development on data-scarce 2D medical tasks.
These 2D models have been surpassed by 3D models on 3D computer vision benchmarks.
We show video pretraining for 3D models can enable higher performance on smaller datasets for 3D medical tasks.
arXiv Detail & Related papers (2023-04-02T14:46:58Z) - Efficiently Training Vision Transformers on Structural MRI Scans for
Alzheimer's Disease Detection [2.359557447960552]
Vision transformers (ViT) have emerged in recent years as an alternative to CNNs for several computer vision applications.
We tested variants of the ViT architecture for a range of desired neuroimaging downstream tasks based on difficulty.
We achieved a performance boost of 5% and 9-10% upon fine-tuning vision transformer models pre-trained on synthetic and real MRI scans.
arXiv Detail & Related papers (2023-03-14T20:18:12Z) - Unsupervised Pre-Training on Patient Population Graphs for Patient-Level
Predictions [48.02011627390706]
Pre-training has shown success in different areas of machine learning, such as Computer Vision (CV), Natural Language Processing (NLP) and medical imaging.
In this paper, we apply unsupervised pre-training to heterogeneous, multi-modal EHR data for patient outcome prediction.
We find that our proposed graph based pre-training method helps in modeling the data at a population level.
arXiv Detail & Related papers (2022-03-23T17:59:45Z) - DeepAD: A Robust Deep Learning Model of Alzheimer's Disease Progression
for Real-World Clinical Applications [0.9999629695552196]
We propose a novel multi-task deep learning model to predict Alzheimer's disease progression.
Our model integrates high dimensional MRI features from a 3D convolutional neural network with other data modalities.
arXiv Detail & Related papers (2022-03-17T05:42:00Z) - Advancing 3D Medical Image Analysis with Variable Dimension Transform
based Supervised 3D Pre-training [45.90045513731704]
This paper revisits an innovative yet simple fully-supervised 3D network pre-training framework.
With a redesigned 3D network architecture, reformulated natural images are used to address the problem of data scarcity.
Comprehensive experiments on four benchmark datasets demonstrate that the proposed pre-trained models can effectively accelerate convergence.
arXiv Detail & Related papers (2022-01-05T03:11:21Z) - Self-Supervised Pretraining Improves Self-Supervised Pretraining [83.1423204498361]
Self-supervised pretraining requires expensive and lengthy computation, large amounts of data, and is sensitive to data augmentation.
This paper explores Hierarchical PreTraining (HPT), which decreases convergence time and improves accuracy by initializing the pretraining process with an existing pretrained model.
We show HPT converges up to 80x faster, improves accuracy across tasks, and improves the robustness of the self-supervised pretraining process to changes in the image augmentation policy or amount of pretraining data.
arXiv Detail & Related papers (2021-03-23T17:37:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.