SSHNN: Semi-Supervised Hybrid NAS Network for Echocardiographic Image
Segmentation
- URL: http://arxiv.org/abs/2309.04672v2
- Date: Wed, 27 Dec 2023 07:01:23 GMT
- Title: SSHNN: Semi-Supervised Hybrid NAS Network for Echocardiographic Image
Segmentation
- Authors: Renqi Chen, Jingjing Luo, Fan Nian, Yuhui Cen, Yiheng Peng and Zekuan
Yu
- Abstract summary: We propose a novel semi-supervised hybrid NAS network for accurate medical image segmentation termed SSHNN.
In SSHNN, we creatively use convolution operation in layer-wise feature fusion instead of normalized scalars to avoid losing details.
Specifically, we implement a semi-supervised algorithm Mean-Teacher to overcome the limited volume problem of labeled medical image dataset.
- Score: 2.8358100463599722
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate medical image segmentation especially for echocardiographic images
with unmissable noise requires elaborate network design. Compared with manual
design, Neural Architecture Search (NAS) realizes better segmentation results
due to larger search space and automatic optimization, but most of the existing
methods are weak in layer-wise feature aggregation and adopt a ``strong
encoder, weak decoder" structure, insufficient to handle global relationships
and local details. To resolve these issues, we propose a novel semi-supervised
hybrid NAS network for accurate medical image segmentation termed SSHNN. In
SSHNN, we creatively use convolution operation in layer-wise feature fusion
instead of normalized scalars to avoid losing details, making NAS a stronger
encoder. Moreover, Transformers are introduced for the compensation of global
context and U-shaped decoder is designed to efficiently connect global context
with local features. Specifically, we implement a semi-supervised algorithm
Mean-Teacher to overcome the limited volume problem of labeled medical image
dataset. Extensive experiments on CAMUS echocardiography dataset demonstrate
that SSHNN outperforms state-of-the-art approaches and realizes accurate
segmentation. Code will be made publicly available.
Related papers
- HCS-TNAS: Hybrid Constraint-driven Semi-supervised Transformer-NAS for Ultrasound Image Segmentation [0.34089646689382486]
We introduce a hybrid constraint-driven semi-supervised Transformer-NAS (HCS-TNAS) for ultrasound segmentation.
HCS-TNAS includes an Efficient NAS-ViT module for multi-scale token search before ViT's attention calculation, effectively capturing contextual and local information with lower computational costs.
Experiments on public datasets show that HCS-TNAS achieves state-of-the-art performance, pushing the limit of ultrasound segmentation.
arXiv Detail & Related papers (2024-07-05T01:02:12Z) - BEFUnet: A Hybrid CNN-Transformer Architecture for Precise Medical Image
Segmentation [0.0]
This paper proposes an innovative U-shaped network called BEFUnet, which enhances the fusion of body and edge information for precise medical image segmentation.
The BEFUnet comprises three main modules, including a novel Local Cross-Attention Feature (LCAF) fusion module, a novel Double-Level Fusion (DLF) module, and dual-branch encoder.
The LCAF module efficiently fuses edge and body features by selectively performing local cross-attention on features that are spatially close between the two modalities.
arXiv Detail & Related papers (2024-02-13T21:03:36Z) - BRAU-Net++: U-Shaped Hybrid CNN-Transformer Network for Medical Image Segmentation [11.986549780782724]
We propose a hybrid yet effective CNN-Transformer network, named BRAU-Net++, for an accurate medical image segmentation task.
Specifically, BRAU-Net++ uses bi-level routing attention as the core building block to design our u-shaped encoder-decoder structure.
Our proposed approach surpasses other state-of-the-art methods including its baseline: BRAU-Net.
arXiv Detail & Related papers (2024-01-01T10:49:09Z) - CMUNeXt: An Efficient Medical Image Segmentation Network based on Large
Kernel and Skip Fusion [11.434576556863934]
CMUNeXt is an efficient fully convolutional lightweight medical image segmentation network.
It enables fast and accurate auxiliary diagnosis in real scene scenarios.
arXiv Detail & Related papers (2023-08-02T15:54:00Z) - BCS-Net: Boundary, Context and Semantic for Automatic COVID-19 Lung
Infection Segmentation from CT Images [83.82141604007899]
BCS-Net is a novel network for automatic COVID-19 lung infection segmentation from CT images.
BCS-Net follows an encoder-decoder architecture, and more designs focus on the decoder stage.
In each BCSR block, the attention-guided global context (AGGC) module is designed to learn the most valuable encoder features for decoder.
arXiv Detail & Related papers (2022-07-17T08:54:07Z) - Small Lesion Segmentation in Brain MRIs with Subpixel Embedding [105.1223735549524]
We present a method to segment MRI scans of the human brain into ischemic stroke lesion and normal tissues.
We propose a neural network architecture in the form of a standard encoder-decoder where predictions are guided by a spatial expansion embedding network.
arXiv Detail & Related papers (2021-09-18T00:21:17Z) - Dynamic Neural Representational Decoders for High-Resolution Semantic
Segmentation [98.05643473345474]
We propose a novel decoder, termed dynamic neural representational decoder (NRD)
As each location on the encoder's output corresponds to a local patch of the semantic labels, in this work, we represent these local patches of labels with compact neural networks.
This neural representation enables our decoder to leverage the smoothness prior in the semantic label space, and thus makes our decoder more efficient.
arXiv Detail & Related papers (2021-07-30T04:50:56Z) - Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation [63.46694853953092]
Swin-Unet is an Unet-like pure Transformer for medical image segmentation.
tokenized image patches are fed into the Transformer-based U-shaped decoder-Decoder architecture.
arXiv Detail & Related papers (2021-05-12T09:30:26Z) - TransUNet: Transformers Make Strong Encoders for Medical Image
Segmentation [78.01570371790669]
Medical image segmentation is an essential prerequisite for developing healthcare systems.
On various medical image segmentation tasks, the u-shaped architecture, also known as U-Net, has become the de-facto standard.
We propose TransUNet, which merits both Transformers and U-Net, as a strong alternative for medical image segmentation.
arXiv Detail & Related papers (2021-02-08T16:10:50Z) - Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective
with Transformers [149.78470371525754]
We treat semantic segmentation as a sequence-to-sequence prediction task. Specifically, we deploy a pure transformer to encode an image as a sequence of patches.
With the global context modeled in every layer of the transformer, this encoder can be combined with a simple decoder to provide a powerful segmentation model, termed SEgmentation TRansformer (SETR)
SETR achieves new state of the art on ADE20K (50.28% mIoU), Pascal Context (55.83% mIoU) and competitive results on Cityscapes.
arXiv Detail & Related papers (2020-12-31T18:55:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.