論文の概要: Redundancy-Free Self-Supervised Relational Learning for Graph Clustering
- arxiv url: http://arxiv.org/abs/2309.04694v1
- Date: Sat, 9 Sep 2023 06:18:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-12 16:55:49.844251
- Title: Redundancy-Free Self-Supervised Relational Learning for Graph Clustering
- Title(参考訳): グラフクラスタリングのための冗長性フリー自己教師付き関係学習
- Authors: Si-Yu Yi, Wei Ju, Yifang Qin, Xiao Luo, Luchen Liu, Yong-Dao Zhou,
Ming Zhang
- Abstract要約: 冗長フリーグラフクラスタリング(R$2$FGC)という,自己教師付き深層グラフクラスタリング手法を提案する。
オートエンコーダとグラフオートエンコーダに基づいて,グローバルビューとローカルビューの両方から属性レベルと構造レベルの関係情報を抽出する。
この実験は,R$2$FGCが最先端のベースラインよりも優れていることを示すために,広く使用されているベンチマークデータセット上で実施されている。
- 参考スコア(独自算出の注目度): 13.176413653235311
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph clustering, which learns the node representations for effective cluster
assignments, is a fundamental yet challenging task in data analysis and has
received considerable attention accompanied by graph neural networks in recent
years. However, most existing methods overlook the inherent relational
information among the non-independent and non-identically distributed nodes in
a graph. Due to the lack of exploration of relational attributes, the semantic
information of the graph-structured data fails to be fully exploited which
leads to poor clustering performance. In this paper, we propose a novel
self-supervised deep graph clustering method named Relational Redundancy-Free
Graph Clustering (R$^2$FGC) to tackle the problem. It extracts the attribute-
and structure-level relational information from both global and local views
based on an autoencoder and a graph autoencoder. To obtain effective
representations of the semantic information, we preserve the consistent
relation among augmented nodes, whereas the redundant relation is further
reduced for learning discriminative embeddings. In addition, a simple yet valid
strategy is utilized to alleviate the over-smoothing issue. Extensive
experiments are performed on widely used benchmark datasets to validate the
superiority of our R$^2$FGC over state-of-the-art baselines. Our codes are
available at https://github.com/yisiyu95/R2FGC.
- Abstract(参考訳): 効率的なクラスタ割り当てのためのノード表現を学習するグラフクラスタリングは、データ分析の基本的な課題であるが、近年はグラフニューラルネットワークに付随してかなりの注目を集めている。
しかし、既存のほとんどの手法は、グラフ内の非独立ノードと非独立ノードの間の固有関係情報を無視する。
関係属性の探索が欠如しているため、グラフ構造化データのセマンティクス情報は十分に活用されず、クラスタリング性能が低下する。
本稿では,リレーショナル冗長性フリーグラフクラスタリング(r$^2$fgc)という,自己教師付きディープグラフクラスタリング手法を提案する。
オートエンコーダとグラフオートエンコーダに基づいて,グローバルビューとローカルビューの両方から属性と構造レベルの関係情報を抽出する。
意味情報の効果的な表現を得るためには,拡張ノード間の一貫性を保ちながら,識別埋め込みの学習では冗長関係がさらに減少する。
さらに、過度な問題を軽減するために、シンプルで有効な戦略が活用される。
広く使用されているベンチマークデータセットで広範な実験が行われ、最先端のベースラインよりもr$^2$fgcが優れていることを検証します。
私たちのコードはhttps://github.com/yisiyu95/r2fgcで利用可能です。
関連論文リスト
- Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
グラフ畳み込みネットワーク(GCN)は、グラフベースのクラスタリングを改善する上で大きな可能性を秘めている。
モデルはGCNを適用するために初期グラフを事前に推定する。
一般的なデータクラスタリングには,Deep Contrastive Graph Learning (DCGL)モデルが提案されている。
論文 参考訳(メタデータ) (2024-02-25T07:03:37Z) - Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
本稿では,属性付きグラフデータに対する新しいDeep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE)を提案する。
提案手法は,最先端のベースラインアルゴリズムを,一般的なデータセット間でのダウンストリームタスクの差を大きく越える。
論文 参考訳(メタデータ) (2024-01-12T17:57:07Z) - Deep Temporal Graph Clustering [77.02070768950145]
深部時間グラフクラスタリング(GC)のための汎用フレームワークを提案する。
GCは、時間グラフの相互作用シーケンスに基づくバッチ処理パターンに適合するディープクラスタリング技術を導入している。
我々のフレームワークは、既存の時間グラフ学習手法の性能を効果的に向上させることができる。
論文 参考訳(メタデータ) (2023-05-18T06:17:50Z) - Graph Representation Learning via Contrasting Cluster Assignments [57.87743170674533]
GRCCAと呼ばれるクラスタ割り当てを対比して、教師なしグラフ表現モデルを提案する。
クラスタリングアルゴリズムとコントラスト学習を組み合わせることで、局所的およびグローバルな情報を合成的にうまく活用する動機付けがある。
GRCCAは、ほとんどのタスクにおいて強力な競争力を持っている。
論文 参考訳(メタデータ) (2021-12-15T07:28:58Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
マルチビュークラスタリングのための効率的かつ効率的なグラフ学習モデルを提案する。
本手法はテンソルシャッテンp-ノルムの最小化により異なるビューのグラフ間のビュー類似性を利用する。
提案アルゴリズムは時間経済であり,安定した結果を得るとともに,データサイズによく対応している。
論文 参考訳(メタデータ) (2021-08-15T13:14:28Z) - Sub-graph Contrast for Scalable Self-Supervised Graph Representation
Learning [21.0019144298605]
既存のグラフニューラルネットワークは、計算量やメモリコストが限られているため、完全なグラフデータで供給される。
textscSubg-Conは、中央ノードとそのサンプルサブグラフ間の強い相関を利用して、地域構造情報をキャプチャすることで提案される。
既存のグラフ表現学習アプローチと比較して、textscSubg-Conは、より弱い監視要件、モデル学習のスケーラビリティ、並列化において、顕著なパフォーマンス上のアドバンテージを持っています。
論文 参考訳(メタデータ) (2020-09-22T01:58:19Z) - Graph InfoClust: Leveraging cluster-level node information for
unsupervised graph representation learning [12.592903558338444]
本稿では,グラフ InfoClust というグラフ表現学習手法を提案する。
同社はさらに、クラスタレベルの情報コンテンツをキャプチャしようとしている。
この最適化により、ノード表現はよりリッチな情報とノイズ相互作用をキャプチャし、それによって品質が向上する。
論文 参考訳(メタデータ) (2020-09-15T09:33:20Z) - CAGNN: Cluster-Aware Graph Neural Networks for Unsupervised Graph
Representation Learning [19.432449825536423]
教師なしグラフ表現学習は、教師なしの低次元ノード埋め込みを学習することを目的としている。
本稿では、自己教師付き手法を用いた教師なしグラフ表現学習のための新しいクラスタ対応グラフニューラルネットワーク(CAGNN)モデルを提案する。
論文 参考訳(メタデータ) (2020-09-03T13:57:18Z) - Adaptive Graph Auto-Encoder for General Data Clustering [90.8576971748142]
グラフベースのクラスタリングは、クラスタリング領域において重要な役割を果たす。
グラフ畳み込みニューラルネットワークに関する最近の研究は、グラフ型データにおいて驚くべき成功を収めている。
本稿では,グラフの生成的視点に応じて適応的にグラフを構成する汎用データクラスタリングのためのグラフ自動エンコーダを提案する。
論文 参考訳(メタデータ) (2020-02-20T10:11:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。