論文の概要: FaNS: a Facet-based Narrative Similarity Metric
- arxiv url: http://arxiv.org/abs/2309.04823v1
- Date: Sat, 9 Sep 2023 15:29:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-12 16:09:59.076952
- Title: FaNS: a Facet-based Narrative Similarity Metric
- Title(参考訳): FaNS: Facetベースのナラティブ類似度メトリクス
- Authors: Mousumi Akter, Shubhra Kanti Karmaker Santu
- Abstract要約: 本稿では,Facet-based Narrative similarity (FaNS)と呼ばれる新しい物語類似度指標を提案する。
FaNSは、最先端の大規模言語モデル(LLM)を活用して抽出される古典的な5W1Hファセット(Who, What, When, Where, Why, How)に基づいている。
- 参考スコア(独自算出の注目度): 6.992767260794627
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Similar Narrative Retrieval is a crucial task since narratives are essential
for explaining and understanding events, and multiple related narratives often
help to create a holistic view of the event of interest. To accurately identify
semantically similar narratives, this paper proposes a novel narrative
similarity metric called Facet-based Narrative Similarity (FaNS), based on the
classic 5W1H facets (Who, What, When, Where, Why, and How), which are extracted
by leveraging the state-of-the-art Large Language Models (LLMs). Unlike
existing similarity metrics that only focus on overall lexical/semantic match,
FaNS provides a more granular matching along six different facets independently
and then combines them. To evaluate FaNS, we created a comprehensive dataset by
collecting narratives from AllSides, a third-party news portal. Experimental
results demonstrate that the FaNS metric exhibits a higher correlation (37\%
higher) than traditional text similarity metrics that directly measure the
lexical/semantic match between narratives, demonstrating its effectiveness in
comparing the finer details between a pair of narratives.
- Abstract(参考訳): 類似の物語検索は、物語が出来事の説明と理解に不可欠であるため、重要な課題であり、複数の関連する物語は、しばしば関心事の全体像を作るのに役立つ。
本稿では,従来の5W1Hファセット (Who, What, When, Where, Why, How, How) に基づいて,現在最先端のLarge Language Models (LLMs) を活用して抽出した物語類似度尺度であるFacet-based Narrative similarity (FaNS)を提案する。
既存の類似度メトリクスとは異なり、ファンは6つの異なるファセットに沿ってより細かいマッチングを提供し、それらを組み合わせる。
FaNSを評価するために、サードパーティのニュースポータルであるAllSidesから物語を収集し、包括的なデータセットを作成しました。
実験の結果、ファンメトリクスは、物語間の語彙/意味の一致を直接測定する従来のテキスト類似度指標よりも高い相関(37\%以上)を示し、一対の物語間の詳細を比較する効果を示している。
関連論文リスト
- Mapping News Narratives Using LLMs and Narrative-Structured Text Embeddings [0.0]
構造主義言語理論に基づく数値的物語表現を導入する。
オープンソースLLMを用いてアクタントを抽出し,それをナラティブ構造化テキスト埋め込みに統合する。
本稿では,イスラエル・パレスチナ紛争に関するアル・ジャジーラとワシントン・ポストの新聞記事5000件を例に,本手法の分析的考察を紹介する。
論文 参考訳(メタデータ) (2024-09-10T14:15:30Z) - Are Large Language Models Capable of Generating Human-Level Narratives? [114.34140090869175]
本稿ではストーリーテリングにおけるLLMの能力について考察し,物語の展開とプロットの進行に着目した。
本稿では,3つの談話レベルの側面から物語を分析するための新しい計算フレームワークを提案する。
談話機能の明示的な統合は、ニューラルストーリーテリングの40%以上の改善によって示されるように、ストーリーテリングを促進することができることを示す。
論文 参考訳(メタデータ) (2024-07-18T08:02:49Z) - GNAT: A General Narrative Alignment Tool [12.100007440638667]
バイオインフォマティクスと現代のテキスト類似度指標を結合したSmith-Watermanアルゴリズムのナラティブアライメントに対する一般的なアプローチを開発する。
文書の相対長と絶対長の両方で大きく異なる4つの異なる問題領域に対して、一般的な物語アライメントツール(GNAT)を適用し、評価する。
論文 参考訳(メタデータ) (2023-11-07T00:24:14Z) - StoryAnalogy: Deriving Story-level Analogies from Large Language Models
to Unlock Analogical Understanding [72.38872974837462]
大規模ストーリーレベルの類似語コーパスを構築することにより,類似語を識別・生成する能力を評価する。
textscStory Analogyには、さまざまなドメインから24Kストーリーペアが含まれており、拡張された構造マッピング理論の2つの類似点に人間のアノテーションがある。
我々は、textscStory Analogyのデータは、大言語モデルにおけるアナログ生成の品質を向上させることができることを観察した。
論文 参考訳(メタデータ) (2023-10-19T16:29:23Z) - Discovering collective narratives shifts in online discussions [3.6231158294409482]
本稿では,変化点検出,意味的役割ラベリング(SRL),物語の断片を物語ネットワークに自動集約することで,ギャップを埋める体系的な物語発見フレームワークを提案する。
我々は、新型コロナウイルスと2017年のフランス大統領選に関する2つのTwitterコーパスを合成および実証データで評価した。
以上の結果から,本手法は主要な出来事に対応する大きな物語シフトを回復できることが示された。
論文 参考訳(メタデータ) (2023-07-17T15:00:04Z) - RoViST:Learning Robust Metrics for Visual Storytelling [2.7124743347047033]
良いストーリーでどの側面を探すかを分析する3つの評価指標セットを提案する。
我々は,機械ストーリーのサンプルを用いて,人間の判断スコアとの相関を解析し,測定値の信頼性を測定する。
論文 参考訳(メタデータ) (2022-05-08T03:51:22Z) - Computational Lens on Cognition: Study Of Autobiographical Versus
Imagined Stories With Large-Scale Language Models [95.88620740809004]
GPT-3を用いた自伝的物語と想像的物語における出来事の物語の流れの相違について検討した。
想像された物語は自伝的物語よりも逐次性が高いことがわかった。
想像された物語と比較すると、自伝的な物語は、最初の人物に関連するより具体的な言葉と単語を含んでいる。
論文 参考訳(メタデータ) (2022-01-07T20:10:47Z) - Relation Clustering in Narrative Knowledge Graphs [71.98234178455398]
原文内の関係文は(SBERTと)埋め込み、意味論的に類似した関係をまとめるためにクラスタ化される。
予備的なテストでは、そのようなクラスタリングが類似した関係を検知し、半教師付きアプローチのための貴重な前処理を提供することが示されている。
論文 参考訳(メタデータ) (2020-11-27T10:43:04Z) - Paragraph-level Commonsense Transformers with Recurrent Memory [77.4133779538797]
物語からコヒーレントなコモンセンス推論を生成するために,段落レベルの情報を含む談話認識モデルを訓練する。
以上の結果から,PARA-COMETは文レベルのベースライン,特にコヒーレントかつ新規な推論に優れていた。
論文 参考訳(メタデータ) (2020-10-04T05:24:12Z) - Exploring aspects of similarity between spoken personal narratives by
disentangling them into narrative clause types [13.350982138577038]
本稿では,594本の映像から10,296の物語節を含む実世界の音声物語のコーパスを紹介する。
第2に,非ナラティブな専門家に,ラボフの社会言語的個人的物語モデルの下で,これらの節に注釈を付けるよう依頼する。
第3に、最上位の節に対して84.7%のFスコアに達する分類器を訓練する。
我々のアプローチは、個人の物語を研究または表現することを目的とした機械学習の手法を情報提供することを目的としている。
論文 参考訳(メタデータ) (2020-05-26T14:34:07Z) - Screenplay Summarization Using Latent Narrative Structure [78.45316339164133]
本稿では,物語の基盤となる構造を一般教師なし・教師付き抽出要約モデルに明示的に組み込むことを提案する。
重要な物語イベント(転回点)の観点で物語構造を定式化し、脚本を要約するために潜伏状態として扱う。
シーンレベルの要約ラベルを付加したテレビ画面のCSIコーパスの実験結果から,潜角点がCSIエピソードの重要な側面と相関していることが判明した。
論文 参考訳(メタデータ) (2020-04-27T11:54:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。