MFPNet: Multi-scale Feature Propagation Network For Lightweight Semantic
Segmentation
- URL: http://arxiv.org/abs/2309.04914v2
- Date: Tue, 12 Sep 2023 05:08:47 GMT
- Title: MFPNet: Multi-scale Feature Propagation Network For Lightweight Semantic
Segmentation
- Authors: Guoan Xu, Wenjing Jia, Tao Wu, Ligeng Chen
- Abstract summary: We propose a novel lightweight segmentation architecture, called Multi-scale Feature Propagation Network (Net)
We design a robust-Decoder structure featuring symmetrical residual blocks that consist of flexible bottleneck residual modules (BRMs)
Taking benefit of their capacity to model latent long-range contextual relationships, we leverage Graph Convolutional Networks (GCNs) to facilitate multiscale feature propagation between the BRM blocks.
- Score: 5.58363644107113
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In contrast to the abundant research focusing on large-scale models, the
progress in lightweight semantic segmentation appears to be advancing at a
comparatively slower pace. However, existing compact methods often suffer from
limited feature representation capability due to the shallowness of their
networks. In this paper, we propose a novel lightweight segmentation
architecture, called Multi-scale Feature Propagation Network (MFPNet), to
address the dilemma. Specifically, we design a robust Encoder-Decoder structure
featuring symmetrical residual blocks that consist of flexible bottleneck
residual modules (BRMs) to explore deep and rich muti-scale semantic context.
Furthermore, taking benefit from their capacity to model latent long-range
contextual relationships, we leverage Graph Convolutional Networks (GCNs) to
facilitate multi-scale feature propagation between the BRM blocks. When
evaluated on benchmark datasets, our proposed approach shows superior
segmentation results.
Related papers
- FANet: Feature Amplification Network for Semantic Segmentation in Cluttered Background [9.970265640589966]
Existing deep learning approaches leave out the semantic cues that are crucial in semantic segmentation present in complex scenarios.
We propose a feature amplification network (FANet) as a backbone network that incorporates semantic information using a novel feature enhancement module at multi-stages.
Our experimental results demonstrate the state-of-the-art performance compared to existing methods.
arXiv Detail & Related papers (2024-07-12T15:57:52Z) - Multi-view Aggregation Network for Dichotomous Image Segmentation [76.75904424539543]
Dichotomous Image (DIS) has recently emerged towards high-precision object segmentation from high-resolution natural images.
Existing methods rely on tedious multiple encoder-decoder streams and stages to gradually complete the global localization and local refinement.
Inspired by it, we model DIS as a multi-view object perception problem and provide a parsimonious multi-view aggregation network (MVANet)
Experiments on the popular DIS-5K dataset show that our MVANet significantly outperforms state-of-the-art methods in both accuracy and speed.
arXiv Detail & Related papers (2024-04-11T03:00:00Z) - LENet: Lightweight And Efficient LiDAR Semantic Segmentation Using
Multi-Scale Convolution Attention [0.0]
We propose a projection-based semantic segmentation network called LENet with an encoder-decoder structure for LiDAR-based semantic segmentation.
The encoder is composed of a novel multi-scale convolutional attention (MSCA) module with varying receptive field sizes to capture features.
We show that our proposed method is lighter, more efficient, and robust compared to state-of-the-art semantic segmentation methods.
arXiv Detail & Related papers (2023-01-11T02:51:38Z) - A Hierarchical Block Distance Model for Ultra Low-Dimensional Graph
Representations [0.0]
This paper proposes a novel scalable graph representation learning method named the Block Distance Model (HBDM)
HBDM accounts for homophily and transitivity by accurately approximating the latent distance model (LDM) throughout the hierarchy.
We evaluate the performance of the HBDM on massive networks consisting of millions of nodes.
arXiv Detail & Related papers (2022-04-12T15:23:12Z) - SpatioTemporal Focus for Skeleton-based Action Recognition [66.8571926307011]
Graph convolutional networks (GCNs) are widely adopted in skeleton-based action recognition.
We argue that the performance of recent proposed skeleton-based action recognition methods is limited by the following factors.
Inspired by the recent attention mechanism, we propose a multi-grain contextual focus module, termed MCF, to capture the action associated relation information.
arXiv Detail & Related papers (2022-03-31T02:45:24Z) - Learning to Aggregate Multi-Scale Context for Instance Segmentation in
Remote Sensing Images [28.560068780733342]
A novel context aggregation network (CATNet) is proposed to improve the feature extraction process.
The proposed model exploits three lightweight plug-and-play modules, namely dense feature pyramid network (DenseFPN), spatial context pyramid ( SCP), and hierarchical region of interest extractor (HRoIE)
arXiv Detail & Related papers (2021-11-22T08:55:25Z) - Multi-Scale Semantics-Guided Neural Networks for Efficient
Skeleton-Based Human Action Recognition [140.18376685167857]
A simple yet effective multi-scale semantics-guided neural network is proposed for skeleton-based action recognition.
MS-SGN achieves the state-of-the-art performance on the NTU60, NTU120, and SYSU datasets.
arXiv Detail & Related papers (2021-11-07T03:50:50Z) - Lightweight Image Super-Resolution with Multi-scale Feature Interaction
Network [15.846394239848959]
We present a lightweight multi-scale feature interaction network (MSFIN)
For lightweight SISR, MSFIN expands the receptive field and adequately exploits the informative features of the low-resolution observed images.
Our proposed MSFIN can achieve comparable performance against the state-of-the-arts with a more lightweight model.
arXiv Detail & Related papers (2021-03-24T07:25:21Z) - Recursive Multi-model Complementary Deep Fusion forRobust Salient Object
Detection via Parallel Sub Networks [62.26677215668959]
Fully convolutional networks have shown outstanding performance in the salient object detection (SOD) field.
This paper proposes a wider'' network architecture which consists of parallel sub networks with totally different network architectures.
Experiments on several famous benchmarks clearly demonstrate the superior performance, good generalization, and powerful learning ability of the proposed wider framework.
arXiv Detail & Related papers (2020-08-07T10:39:11Z) - Sequential Hierarchical Learning with Distribution Transformation for
Image Super-Resolution [83.70890515772456]
We build a sequential hierarchical learning super-resolution network (SHSR) for effective image SR.
We consider the inter-scale correlations of features, and devise a sequential multi-scale block (SMB) to progressively explore the hierarchical information.
Experiment results show SHSR achieves superior quantitative performance and visual quality to state-of-the-art methods.
arXiv Detail & Related papers (2020-07-19T01:35:53Z) - Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral
Super-Resolution [79.97180849505294]
We propose a novel coupled unmixing network with a cross-attention mechanism, CUCaNet, to enhance the spatial resolution of HSI.
Experiments are conducted on three widely-used HS-MS datasets in comparison with state-of-the-art HSI-SR models.
arXiv Detail & Related papers (2020-07-10T08:08:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.