A Hierarchical Block Distance Model for Ultra Low-Dimensional Graph
Representations
- URL: http://arxiv.org/abs/2204.05885v2
- Date: Wed, 9 Aug 2023 08:53:54 GMT
- Title: A Hierarchical Block Distance Model for Ultra Low-Dimensional Graph
Representations
- Authors: Nikolaos Nakis and Abdulkadir \c{C}elikkanat and Sune Lehmann
J{\o}rgensen and Morten M{\o}rup
- Abstract summary: This paper proposes a novel scalable graph representation learning method named the Block Distance Model (HBDM)
HBDM accounts for homophily and transitivity by accurately approximating the latent distance model (LDM) throughout the hierarchy.
We evaluate the performance of the HBDM on massive networks consisting of millions of nodes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Representation Learning (GRL) has become central for characterizing
structures of complex networks and performing tasks such as link prediction,
node classification, network reconstruction, and community detection. Whereas
numerous generative GRL models have been proposed, many approaches have
prohibitive computational requirements hampering large-scale network analysis,
fewer are able to explicitly account for structure emerging at multiple scales,
and only a few explicitly respect important network properties such as
homophily and transitivity. This paper proposes a novel scalable graph
representation learning method named the Hierarchical Block Distance Model
(HBDM). The HBDM imposes a multiscale block structure akin to stochastic block
modeling (SBM) and accounts for homophily and transitivity by accurately
approximating the latent distance model (LDM) throughout the inferred
hierarchy. The HBDM naturally accommodates unipartite, directed, and bipartite
networks whereas the hierarchy is designed to ensure linearithmic time and
space complexity enabling the analysis of very large-scale networks. We
evaluate the performance of the HBDM on massive networks consisting of millions
of nodes. Importantly, we find that the proposed HBDM framework significantly
outperforms recent scalable approaches in all considered downstream tasks.
Surprisingly, we observe superior performance even imposing ultra-low
two-dimensional embeddings facilitating accurate direct and hierarchical-aware
network visualization and interpretation.
Related papers
- Scalable Weibull Graph Attention Autoencoder for Modeling Document Networks [50.42343781348247]
We develop a graph Poisson factor analysis (GPFA) which provides analytic conditional posteriors to improve the inference accuracy.
We also extend GPFA to a multi-stochastic-layer version named graph Poisson gamma belief network (GPGBN) to capture the hierarchical document relationships at multiple semantic levels.
Our models can extract high-quality hierarchical latent document representations and achieve promising performance on various graph analytic tasks.
arXiv Detail & Related papers (2024-10-13T02:22:14Z) - Integrating multiscale topology in digital pathology with pyramidal graph convolutional networks [0.10995326465245926]
Graph convolutional networks (GCNs) have emerged as a powerful alternative to multiple instance learning with convolutional neural networks in digital pathology.
Our proposed multi-scale GCN (MS-GCN) tackles this issue by leveraging information across multiple magnification levels in whole slide images.
MS-GCN demonstrates superior performance over existing single-magnification GCN methods.
arXiv Detail & Related papers (2024-03-22T09:48:50Z) - Network Alignment with Transferable Graph Autoencoders [79.89704126746204]
We propose a novel graph autoencoder architecture designed to extract powerful and robust node embeddings.
We prove that the generated embeddings are associated with the eigenvalues and eigenvectors of the graphs.
Our proposed framework also leverages transfer learning and data augmentation to achieve efficient network alignment at a very large scale without retraining.
arXiv Detail & Related papers (2023-10-05T02:58:29Z) - MFPNet: Multi-scale Feature Propagation Network For Lightweight Semantic
Segmentation [5.58363644107113]
We propose a novel lightweight segmentation architecture, called Multi-scale Feature Propagation Network (Net)
We design a robust-Decoder structure featuring symmetrical residual blocks that consist of flexible bottleneck residual modules (BRMs)
Taking benefit of their capacity to model latent long-range contextual relationships, we leverage Graph Convolutional Networks (GCNs) to facilitate multiscale feature propagation between the BRM blocks.
arXiv Detail & Related papers (2023-09-10T02:02:29Z) - MGNNI: Multiscale Graph Neural Networks with Implicit Layers [53.75421430520501]
implicit graph neural networks (GNNs) have been proposed to capture long-range dependencies in underlying graphs.
We introduce and justify two weaknesses of implicit GNNs: the constrained expressiveness due to their limited effective range for capturing long-range dependencies, and their lack of ability to capture multiscale information on graphs at multiple resolutions.
We propose a multiscale graph neural network with implicit layers (MGNNI) which is able to model multiscale structures on graphs and has an expanded effective range for capturing long-range dependencies.
arXiv Detail & Related papers (2022-10-15T18:18:55Z) - Multi-Scale Spatial Temporal Graph Convolutional Network for
Skeleton-Based Action Recognition [13.15374205970988]
We present a multi-scale spatial graph convolution (MS-GC) module and a multi-scale temporal graph convolution (MT-GC) module.
The MS-GC and MT-GC modules decompose the corresponding local graph convolution into a set of sub-graph convolutions, forming a hierarchical residual architecture.
We propose a multi-scale spatial temporal graph convolutional network (MST-GCN), which stacks multiple blocks to learn effective motion representations for action recognition.
arXiv Detail & Related papers (2022-06-27T03:17:33Z) - Hierarchical Message-Passing Graph Neural Networks [12.207978823927386]
We propose a novel Hierarchical Message-passing Graph Neural Networks framework.
Key idea is generating a hierarchical structure that re-organises all nodes in a flat graph into multi-level super graphs.
We present the first model to implement this framework, termed Hierarchical Community-aware Graph Neural Network (HC-GNN)
arXiv Detail & Related papers (2020-09-08T13:11:07Z) - Dual-constrained Deep Semi-Supervised Coupled Factorization Network with
Enriched Prior [80.5637175255349]
We propose a new enriched prior based Dual-constrained Deep Semi-Supervised Coupled Factorization Network, called DS2CF-Net.
To ex-tract hidden deep features, DS2CF-Net is modeled as a deep-structure and geometrical structure-constrained neural network.
Our network can obtain state-of-the-art performance for representation learning and clustering.
arXiv Detail & Related papers (2020-09-08T13:10:21Z) - A Multi-Semantic Metapath Model for Large Scale Heterogeneous Network
Representation Learning [52.83948119677194]
We propose a multi-semantic metapath (MSM) model for large scale heterogeneous representation learning.
Specifically, we generate multi-semantic metapath-based random walks to construct the heterogeneous neighborhood to handle the unbalanced distributions.
We conduct systematical evaluations for the proposed framework on two challenging datasets: Amazon and Alibaba.
arXiv Detail & Related papers (2020-07-19T22:50:20Z) - Consistency of Spectral Clustering on Hierarchical Stochastic Block
Models [5.983753938303726]
We study the hierarchy of communities in real-world networks under a generic block model.
We prove the strong consistency of this method under a wide range of model parameters.
Unlike most of existing work, our theory covers multiscale networks where the connection probabilities may differ by orders of magnitude.
arXiv Detail & Related papers (2020-04-30T01:08:59Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.