論文の概要: Unsupervised Chunking with Hierarchical RNN
- arxiv url: http://arxiv.org/abs/2309.04919v1
- Date: Sun, 10 Sep 2023 02:55:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-12 15:39:20.059031
- Title: Unsupervised Chunking with Hierarchical RNN
- Title(参考訳): 階層的RNNを用いた教師なしチャンキング
- Authors: Zijun Wu, Anup Anand Deshmukh, Yongkang Wu, Jimmy Lin, Lili Mou
- Abstract要約: 本稿では,非階層的手法で単語をグループ化する構文的タスクであるチャンキングに対する教師なしアプローチを紹介する。
本稿では,単語-チャンク・チャンク-文合成をモデル化した2層階層型階層型リカレントニューラルネットワーク(HRNN)を提案する。
CoNLL-2000データセットの実験では、既存の教師なし手法よりも顕著な改善が見られ、フレーズF1スコアが最大6ポイント向上した。
- 参考スコア(独自算出の注目度): 62.15060807493364
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: In Natural Language Processing (NLP), predicting linguistic structures, such
as parsing and chunking, has mostly relied on manual annotations of syntactic
structures. This paper introduces an unsupervised approach to chunking, a
syntactic task that involves grouping words in a non-hierarchical manner. We
present a two-layer Hierarchical Recurrent Neural Network (HRNN) designed to
model word-to-chunk and chunk-to-sentence compositions. Our approach involves a
two-stage training process: pretraining with an unsupervised parser and
finetuning on downstream NLP tasks. Experiments on the CoNLL-2000 dataset
reveal a notable improvement over existing unsupervised methods, enhancing
phrase F1 score by up to 6 percentage points. Further, finetuning with
downstream tasks results in an additional performance improvement.
Interestingly, we observe that the emergence of the chunking structure is
transient during the neural model's downstream-task training. This study
contributes to the advancement of unsupervised syntactic structure discovery
and opens avenues for further research in linguistic theory.
- Abstract(参考訳): 自然言語処理(NLP)では、構文構造の手動アノテーションに大きく依存し、構文解析やチャンキングなどの言語構造を予測する。
本稿では,非階層的手法で単語をグループ化する構文的タスクであるチャンキングに対する教師なしアプローチを紹介する。
本稿では,単語-チャンク・チャンク-文合成をモデル化した2層階層型階層型リカレントニューラルネットワーク(HRNN)を提案する。
提案手法は,教師なしのパーサによる事前学習と,下流のNLPタスクの微調整という2段階の訓練プロセスを含む。
CoNLL-2000データセットの実験では、既存の教師なし手法よりも顕著な改善が見られ、フレーズF1スコアが最大6ポイント向上した。
さらに、下流タスクによる微調整は、さらなるパフォーマンス向上をもたらす。
興味深いことに、ニューラルネットワークの下流タスクトレーニング中にチャンキング構造の出現が過渡的である。
本研究は,教師なし構文構造発見の進展に寄与し,言語理論のさらなる研究の道を開く。
関連論文リスト
- Linguistic Structure Induction from Language Models [1.8130068086063336]
この論文は、教師なし環境で言語モデル(LM)から選挙区構造と依存関係構造を生成することに焦点を当てている。
本稿では,エンコーダネットワークにトランスフォーマーアーキテクチャを組み込んだStructFormer(SF)について詳細に検討し,その構成と依存性について述べる。
この分野の課題を分析し、対処するための6つの実験を提示します。
論文 参考訳(メタデータ) (2024-03-11T16:54:49Z) - Topic-driven Distant Supervision Framework for Macro-level Discourse
Parsing [72.14449502499535]
テキストの内部修辞構造を解析する作業は、自然言語処理において難しい問題である。
近年のニューラルモデルの発展にもかかわらず、トレーニングのための大規模で高品質なコーパスの欠如は大きな障害となっている。
近年の研究では、遠方の監督を用いてこの制限を克服しようと試みている。
論文 参考訳(メタデータ) (2023-05-23T07:13:51Z) - Autoregressive Structured Prediction with Language Models [73.11519625765301]
本稿では, PLM を用いた自己回帰的手法を用いて, モデル構造を行動列として記述する。
我々のアプローチは、私たちが見てきた全ての構造化予測タスクにおいて、新しい最先端を実現する。
論文 参考訳(メタデータ) (2022-10-26T13:27:26Z) - Word Sense Induction with Hierarchical Clustering and Mutual Information
Maximization [14.997937028599255]
単語知覚誘導は自然言語処理において難しい問題である。
階層的クラスタリングと不変情報クラスタリングに基づく新しい教師なし手法を提案する。
我々は、ある場合において、我々のアプローチが先行したWSIの最先端手法よりも優れていることを実証的に実証した。
論文 参考訳(メタデータ) (2022-10-11T13:04:06Z) - Co-training an Unsupervised Constituency Parser with Weak Supervision [33.63314110665062]
本稿では,あるノードが文中の特定のスパンを支配しているかどうかを識別するために,ブートストラップ分類器に依存する教師なし解析手法を提案する。
両者の相互作用が両者の精度の向上に役立ち、その結果、効果的に解析できることが示される。
論文 参考訳(メタデータ) (2021-10-05T18:45:06Z) - Randomized Deep Structured Prediction for Discourse-Level Processing [45.725437752821655]
近年,表現型テキストエンコーダがNLPモデルの中心となっている。
複雑な議論構造を含むタスク群に対して,深層構造予測と表現型ニューラルネットワークエンコーダを効率的に活用できることを示す。
論文 参考訳(メタデータ) (2021-01-25T21:49:32Z) - Infusing Finetuning with Semantic Dependencies [62.37697048781823]
シンタックスとは異なり、セマンティクスは今日の事前訓練モデルによって表面化されないことを示す。
次に、畳み込みグラフエンコーダを使用して、タスク固有の微調整にセマンティック解析を明示的に組み込む。
論文 参考訳(メタデータ) (2020-12-10T01:27:24Z) - SLM: Learning a Discourse Language Representation with Sentence
Unshuffling [53.42814722621715]
談話言語表現を学習するための新しい事前学習目的である文レベル言語モデリングを導入する。
本モデルでは,この特徴により,従来のBERTの性能が大幅に向上することを示す。
論文 参考訳(メタデータ) (2020-10-30T13:33:41Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
教師なし環境で,事前学習した言語モデルを用いて高品質なパラフレーズを生成する訓練パイプラインを提案する。
提案手法は,タスク適応,自己スーパービジョン,動的ブロッキング(Dynamic Blocking)という新しい復号アルゴリズムから構成される。
提案手法は,Quora Question PairとParaNMTの両方のデータセット上で,最先端の性能を達成できることを示す。
論文 参考訳(メタデータ) (2020-10-24T11:55:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。