Federated Learning Incentive Mechanism under Buyers' Auction Market
- URL: http://arxiv.org/abs/2309.05063v1
- Date: Sun, 10 Sep 2023 16:09:02 GMT
- Title: Federated Learning Incentive Mechanism under Buyers' Auction Market
- Authors: Jiaxi Yang, Zihao Guo, Sheng Cao, Cuifang Zhao, Li-Chuan Tsai
- Abstract summary: Auction-based Federated Learning (AFL) enables open collaboration among self-interested data consumers and data owners.
We adapt the procurement auction framework, aiming to explain the pricing behavior under buyers' market.
In order to select clients with high reliability and data quality, and to prevent from external attacks, we utilize a blockchain-based reputation mechanism.
- Score: 2.316580879469592
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Auction-based Federated Learning (AFL) enables open collaboration among
self-interested data consumers and data owners. Existing AFL approaches are
commonly under the assumption of sellers' market in that the service clients as
sellers are treated as scarce resources so that the aggregation servers as
buyers need to compete the bids. Yet, as the technology progresses, an
increasing number of qualified clients are now capable of performing federated
learning tasks, leading to shift from sellers' market to a buyers' market. In
this paper, we shift the angle by adapting the procurement auction framework,
aiming to explain the pricing behavior under buyers' market. Our modeling
starts with basic setting under complete information, then move further to the
scenario where sellers' information are not fully observable. In order to
select clients with high reliability and data quality, and to prevent from
external attacks, we utilize a blockchain-based reputation mechanism. The
experimental results validate the effectiveness of our approach.
Related papers
- Federated Learning for Data Market: Shapley-UCB for Seller Selection and Incentives [0.3069335774032178]
We propose a transaction framework based on the federated learning architecture, and design a seller selection algorithm and incentive compensation mechanism.
Specifically, we use gradient similarity and Shapley algorithm to fairly and accurately evaluate the contribution of sellers.
After the training, fair compensation is made according to the seller's participation in the training.
arXiv Detail & Related papers (2024-10-10T03:50:20Z) - Investigating Nudges toward Related Sellers on E-commerce Marketplaces: A Case Study on Amazon [15.11300652519899]
E-commerce marketplaces provide business opportunities to millions of sellers worldwide.
Some of these sellers have special relationships with the marketplace by virtue of using their subsidiary services.
We refer to such sellers collectively as Related Sellers.
arXiv Detail & Related papers (2024-07-01T19:05:40Z) - Language Models Can Reduce Asymmetry in Information Markets [100.38786498942702]
We introduce an open-source simulated digital marketplace where intelligent agents, powered by language models, buy and sell information on behalf of external participants.
The central mechanism enabling this marketplace is the agents' dual capabilities: they have the capacity to assess the quality of privileged information but also come equipped with the ability to forget.
To perform well, agents must make rational decisions, strategically explore the marketplace through generated sub-queries, and synthesize answers from purchased information.
arXiv Detail & Related papers (2024-03-21T14:48:37Z) - An Auction-based Marketplace for Model Trading in Federated Learning [54.79736037670377]
Federated learning (FL) is increasingly recognized for its efficacy in training models using locally distributed data.
We frame FL as a marketplace of models, where clients act as both buyers and sellers.
We propose an auction-based solution to ensure proper pricing based on performance gain.
arXiv Detail & Related papers (2024-02-02T07:25:53Z) - Personalized Federated Learning with Attention-based Client Selection [57.71009302168411]
We propose FedACS, a new PFL algorithm with an Attention-based Client Selection mechanism.
FedACS integrates an attention mechanism to enhance collaboration among clients with similar data distributions.
Experiments on CIFAR10 and FMNIST validate FedACS's superiority.
arXiv Detail & Related papers (2023-12-23T03:31:46Z) - Seller-side Outcome Fairness in Online Marketplaces [8.29306513718005]
We introduce the notion of seller-side outcome fairness and build an optimization model to balance collected recommendation rewards and the fairness metric.
Our numerical experiments on real e-commerce data sets show that our algorithm can lift seller fairness measures while not hurting metrics like collected Gross Merchandise Value (GMV) and total purchases.
arXiv Detail & Related papers (2023-12-06T02:58:49Z) - Salespeople vs SalesBot: Exploring the Role of Educational Value in
Conversational Recommender Systems [78.84530426424838]
Existing conversational recommender systems often overlook users' lack of background knowledge, focusing solely on gathering preferences.
We introduce SalesOps, a framework that facilitates the simulation and evaluation of such systems.
We build SalesBot and ShopperBot, a pair of LLM-powered agents that can simulate either side of the framework.
arXiv Detail & Related papers (2023-10-26T19:44:06Z) - Equilibrium of Data Markets with Externality [5.383900608313559]
We model real-world data markets, where sellers post fixed prices and buyers are free to purchase from any set of sellers.
A key component here is the negative externality buyers induce on one another due to data purchases.
We prove that platforms intervening through a transaction cost can lead to a pure equilibrium with strong welfare guarantees.
arXiv Detail & Related papers (2023-02-16T00:57:49Z) - Knowledge-Aware Federated Active Learning with Non-IID Data [75.98707107158175]
We propose a federated active learning paradigm to efficiently learn a global model with limited annotation budget.
The main challenge faced by federated active learning is the mismatch between the active sampling goal of the global model on the server and that of the local clients.
We propose Knowledge-Aware Federated Active Learning (KAFAL), which consists of Knowledge-Specialized Active Sampling (KSAS) and Knowledge-Compensatory Federated Update (KCFU)
arXiv Detail & Related papers (2022-11-24T13:08:43Z) - OSOUM Framework for Trading Data Research [79.0383470835073]
We supply, to the best of our knowledge, the first open source simulation platform, Open SOUrce Market Simulator (OSOUM) to analyze trading markets and specifically data markets.
We describe and implement a specific data market model, consisting of two types of agents: sellers who own various datasets available for acquisition, and buyers searching for relevant and beneficial datasets for purchase.
Although commercial frameworks, intended for handling data markets, already exist, we provide a free and extensive end-to-end research tool for simulating possible behavior for both buyers and sellers participating in (data) markets.
arXiv Detail & Related papers (2021-02-18T09:20:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.