Federated Learning for Data Market: Shapley-UCB for Seller Selection and Incentives
- URL: http://arxiv.org/abs/2410.09107v1
- Date: Thu, 10 Oct 2024 03:50:20 GMT
- Title: Federated Learning for Data Market: Shapley-UCB for Seller Selection and Incentives
- Authors: Kongyang Chen, Zeming Xu,
- Abstract summary: We propose a transaction framework based on the federated learning architecture, and design a seller selection algorithm and incentive compensation mechanism.
Specifically, we use gradient similarity and Shapley algorithm to fairly and accurately evaluate the contribution of sellers.
After the training, fair compensation is made according to the seller's participation in the training.
- Score: 0.3069335774032178
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, research on the data trading market has been continuously deepened. In the transaction process, there is an information asymmetry process between agents and sellers. For sellers, direct data delivery faces the risk of privacy leakage. At the same time, sellers are not willing to provide data. A reasonable compensation method is needed to encourage sellers to provide data resources. For agents, the quality of data provided by sellers needs to be examined and evaluated. Otherwise, agents may consume too much cost and resources by recruiting sellers with poor data quality. Therefore, it is necessary to build a complete delivery process for the interaction between sellers and agents in the trading market so that the needs of sellers and agents can be met. The federated learning architecture is widely used in the data market due to its good privacy protection. Therefore, in this work, in response to the above challenges, we propose a transaction framework based on the federated learning architecture, and design a seller selection algorithm and incentive compensation mechanism. Specifically, we use gradient similarity and Shapley algorithm to fairly and accurately evaluate the contribution of sellers, and use the modified UCB algorithm to select sellers. After the training, fair compensation is made according to the seller's participation in the training. In view of the above work, we designed reasonable experiments for demonstration and obtained results, proving the rationality and effectiveness of the framework.
Related papers
- Private, Augmentation-Robust and Task-Agnostic Data Valuation Approach for Data Marketplace [56.78396861508909]
PriArTa is an approach for computing the distance between the distribution of the buyer's existing dataset and the seller's dataset.
PriArTa is communication-efficient, enabling the buyer to evaluate datasets without needing access to the entire dataset from each seller.
arXiv Detail & Related papers (2024-11-01T17:13:14Z) - Data Measurements for Decentralized Data Markets [18.99870296998749]
Decentralized data markets can provide more equitable forms of data acquisition for machine learning.
We propose and benchmark federated data measurements to allow a data buyer to find sellers with relevant and diverse datasets.
arXiv Detail & Related papers (2024-06-06T17:03:51Z) - Language Models Can Reduce Asymmetry in Information Markets [100.38786498942702]
We introduce an open-source simulated digital marketplace where intelligent agents, powered by language models, buy and sell information on behalf of external participants.
The central mechanism enabling this marketplace is the agents' dual capabilities: they have the capacity to assess the quality of privileged information but also come equipped with the ability to forget.
To perform well, agents must make rational decisions, strategically explore the marketplace through generated sub-queries, and synthesize answers from purchased information.
arXiv Detail & Related papers (2024-03-21T14:48:37Z) - A Bargaining-based Approach for Feature Trading in Vertical Federated
Learning [54.51890573369637]
We propose a bargaining-based feature trading approach in Vertical Federated Learning (VFL) to encourage economically efficient transactions.
Our model incorporates performance gain-based pricing, taking into account the revenue-based optimization objectives of both parties.
arXiv Detail & Related papers (2024-02-23T10:21:07Z) - Seller-side Outcome Fairness in Online Marketplaces [8.29306513718005]
We introduce the notion of seller-side outcome fairness and build an optimization model to balance collected recommendation rewards and the fairness metric.
Our numerical experiments on real e-commerce data sets show that our algorithm can lift seller fairness measures while not hurting metrics like collected Gross Merchandise Value (GMV) and total purchases.
arXiv Detail & Related papers (2023-12-06T02:58:49Z) - Salespeople vs SalesBot: Exploring the Role of Educational Value in
Conversational Recommender Systems [78.84530426424838]
Existing conversational recommender systems often overlook users' lack of background knowledge, focusing solely on gathering preferences.
We introduce SalesOps, a framework that facilitates the simulation and evaluation of such systems.
We build SalesBot and ShopperBot, a pair of LLM-powered agents that can simulate either side of the framework.
arXiv Detail & Related papers (2023-10-26T19:44:06Z) - Federated Learning Incentive Mechanism under Buyers' Auction Market [2.316580879469592]
Auction-based Federated Learning (AFL) enables open collaboration among self-interested data consumers and data owners.
We adapt the procurement auction framework, aiming to explain the pricing behavior under buyers' market.
In order to select clients with high reliability and data quality, and to prevent from external attacks, we utilize a blockchain-based reputation mechanism.
arXiv Detail & Related papers (2023-09-10T16:09:02Z) - Addressing Budget Allocation and Revenue Allocation in Data Market
Environments Using an Adaptive Sampling Algorithm [14.206050847214652]
We introduce a new algorithm to solve budget allocation and revenue allocation problems simultaneously in linear time.
The new algorithm employs an adaptive sampling process that selects data from those providers who are contributing the most to the model.
We provide theoretical guarantees for the algorithm that show the budget is used efficiently and the properties of revenue allocation are similar to Shapley's.
arXiv Detail & Related papers (2023-06-05T02:28:19Z) - Data Sharing Markets [95.13209326119153]
We study a setup where each agent can be both buyer and seller of data.
We consider two cases: bilateral data exchange (trading data with data) and unilateral data exchange (trading data with money)
arXiv Detail & Related papers (2021-07-19T06:00:34Z) - OSOUM Framework for Trading Data Research [79.0383470835073]
We supply, to the best of our knowledge, the first open source simulation platform, Open SOUrce Market Simulator (OSOUM) to analyze trading markets and specifically data markets.
We describe and implement a specific data market model, consisting of two types of agents: sellers who own various datasets available for acquisition, and buyers searching for relevant and beneficial datasets for purchase.
Although commercial frameworks, intended for handling data markets, already exist, we provide a free and extensive end-to-end research tool for simulating possible behavior for both buyers and sellers participating in (data) markets.
arXiv Detail & Related papers (2021-02-18T09:20:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.