論文の概要: Our Deep CNN Face Matchers Have Developed Achromatopsia
- arxiv url: http://arxiv.org/abs/2309.05180v1
- Date: Mon, 11 Sep 2023 00:32:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-12 14:07:04.122646
- Title: Our Deep CNN Face Matchers Have Developed Achromatopsia
- Title(参考訳): 深層CNNの顔認証システム「Achromatopsia」が開発
- Authors: Aman Bhatta, Domingo Mery, Haiyu Wu, Joyce Annan, Micheal C. King and
Kevin W. Bowyer
- Abstract要約: ディープCNNフェイスマーカは、カラー画像を含むデータセットでトレーニングされる。
このようなマッチングは,テスト画像のグレースケールやカラーバージョンにおいて,基本的に同じ精度で実現できることを示す。
- 参考スコア(独自算出の注目度): 9.804000174362473
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern deep CNN face matchers are trained on datasets containing color
images. We show that such matchers achieve essentially the same accuracy on the
grayscale or the color version of a set of test images. We then consider
possible causes for deep CNN face matchers ``not seeing color''. Popular
web-scraped face datasets actually have 30 to 60\% of their identities with one
or more grayscale images. We analyze whether this grayscale element in the
training set impacts the accuracy achieved, and conclude that it does not.
Further, we show that even with a 100\% grayscale training set, comparable
accuracy is achieved on color or grayscale test images. Then we show that the
skin region of an individual's images in a web-scraped training set exhibit
significant variation in their mapping to color space. This suggests that
color, at least for web-scraped, in-the-wild face datasets, carries limited
identity-related information for training state-of-the-art matchers. Finally,
we verify that comparable accuracy is achieved from training using
single-channel grayscale images, implying that a larger dataset can be used
within the same memory limit, with a less computationally intensive early
layer.
- Abstract(参考訳): 現代のディープcnnフェイスマッチはカラー画像を含むデータセットで訓練される。
このようなマッチングは,テスト画像のグレースケールやカラーバージョンにおいて,基本的に同じ精度で実現できることを示す。
次に,深層cnn顔照合器 ‘not seen color’' の原因を考察する。
人気のあるwebスクレイプされた顔データセットは、実際には1つ以上のグレースケールの画像で、そのアイデンティティの30から60\%を持っている。
トレーニングセットのこのグレースケール要素が達成した精度に影響を及ぼすかどうかを分析し、そうでないと結論付ける。
さらに,100\%の灰色スケールトレーニングセットであっても,色や灰色スケールのテスト画像で同等の精度が得られることを示す。
次に,webスクレイプトレーニングセットにおける個々の画像の皮膚領域が,色空間へのマッピングにおいて有意な変化を示すことを示す。
これは、少なくともWebスクラッチで、ワイルドな顔データセットでは、最先端のマーカをトレーニングするための限定的なアイデンティティ関連情報を持っていることを示唆している。
最後に,単一チャネルグレースケール画像を用いたトレーニングにより,同等の精度が得られることを検証した。
関連論文リスト
- Incorporating Ensemble and Transfer Learning For An End-To-End
Auto-Colorized Image Detection Model [0.0]
本稿では,移動学習とアンサンブル学習の利点を組み合わせた新たな手法を提案する。
提案したモデルは、94.55%から99.13%の精度で有望な結果を示す。
論文 参考訳(メタデータ) (2023-09-25T19:22:57Z) - Improved Diffusion-based Image Colorization via Piggybacked Models [19.807766482434563]
既存の強力なT2I拡散モデルに基づく色付けモデルを提案する。
拡散誘導器は、潜伏拡散モデルの事前訓練された重みを組み込むように設計されている。
次に、輝度認識VQVAEは、所定のグレースケール画像に画素完全アライメントされた色付き結果を生成する。
論文 参考訳(メタデータ) (2023-04-21T16:23:24Z) - Detecting Recolored Image by Spatial Correlation [60.08643417333974]
画像のリカラー化は、画像の色値を操作して新しいスタイルを与える、新たな編集技術である。
本稿では,空間相関の観点から,従来型と深層学習による再色検出の汎用的検出能力を示す解を探索する。
提案手法は,複数のベンチマークデータセット上での最先端検出精度を実現し,未知の種類の再色法を適切に一般化する。
論文 参考訳(メタデータ) (2022-04-23T01:54:06Z) - Influence of Color Spaces for Deep Learning Image Colorization [2.3705923859070217]
既存のカラー化手法は、RGB、YUV、Labなど、さまざまな色空間に依存している。
本章では,深層ニューラルネットワークのトレーニングによって得られる結果に対する影響について検討する。
RGB,YUV,Labの色空間と同一の深層ニューラルネットワークアーキテクチャを用いて得られた結果を比較した。
論文 参考訳(メタデータ) (2022-04-06T14:14:07Z) - Color2Style: Real-Time Exemplar-Based Image Colorization with
Self-Reference Learning and Deep Feature Modulation [29.270149925368674]
色を鮮やかな色で満たしてグレースケールの画像媒体を復活させるため,カラーカラー化手法としてColor2Styleを提案する。
提案手法は,参照画像から抽出した色埋め込みを入力されたグレースケール画像の深部表現に注入する,単純だが効果的な深部特徴変調(DFM)モジュールを利用する。
論文 参考訳(メタデータ) (2021-06-15T10:05:58Z) - Assessing The Importance Of Colours For CNNs In Object Recognition [70.70151719764021]
畳み込みニューラルネットワーク(CNN)は相反する性質を示すことが示されている。
CNNが予測をしながら色情報に大きく依存していることを実証します。
congruent, greyscale, incongruent画像の合同画像で学習したモデルを評価する。
論文 参考訳(メタデータ) (2020-12-12T22:55:06Z) - Image Colorization: A Survey and Dataset [94.59768013860668]
本稿では,最先端の深層学習に基づく画像着色技術に関する包括的調査を行う。
既存の着色技法を7つのクラスに分類し、その性能を規定する重要な要因について論じる。
我々は既存のデータセットと提案した画像の両方を用いて、既存の画像のカラー化手法を広範囲に実験的に評価する。
論文 参考訳(メタデータ) (2020-08-25T01:22:52Z) - Semantic-driven Colorization [78.88814849391352]
最近の着色は、白黒画像の着色を学習しながら意味情報を暗黙的に予測する。
そこで本研究では,まず,人間の動作をシミュレートして,画像の理解を学習し,色づけする。
論文 参考訳(メタデータ) (2020-06-13T08:13:30Z) - Instance-aware Image Colorization [51.12040118366072]
本稿では,インスタンス認識のカラー化を実現する手法を提案する。
我々のネットワークアーキテクチャは、市販のオブジェクト検出器を利用して、収穫されたオブジェクト画像を取得する。
類似したネットワークを用いて、フルイメージの特徴を抽出し、融合モジュールを適用して最終色を予測する。
論文 参考訳(メタデータ) (2020-05-21T17:59:23Z) - Learning to Structure an Image with Few Colors [59.34619548026885]
そこで,カラー量子化ネットワークであるColorCNNを提案する。
1ビットのカラースペース(すなわち2色)だけで、提案されたネットワークはCIFAR10データセット上で82.1%のトップ-1の精度を達成した。
アプリケーションの場合、PNGでエンコードされた場合、提案したカラー量子化は、極低ビットレート方式の他の画像圧縮方法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-03-17T17:56:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。