論文の概要: CARE: Confidence-rich Autonomous Robot Exploration using Bayesian Kernel
Inference and Optimization
- arxiv url: http://arxiv.org/abs/2309.05200v1
- Date: Mon, 11 Sep 2023 02:30:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-12 14:10:42.703532
- Title: CARE: Confidence-rich Autonomous Robot Exploration using Bayesian Kernel
Inference and Optimization
- Title(参考訳): ベイズ核推論と最適化を用いた信頼度の高い自律ロボット探索
- Authors: Yang Xu, Ronghao Zheng, Senlin Zhang, Meiqin Liu, Shoudong Huang
- Abstract要約: 未知・複雑な環境における情報に基づく自律ロボット探査の効率化を検討する。
ベイジアンカーネル推論と最適化に基づく新しい軽量情報ゲイン推定法(BKIO)を提案する。
異なる非構造, 乱雑な環境下での探索性能を損なうことなく, 提案手法の所望の効率性を示す。
- 参考スコア(独自算出の注目度): 12.32946442160165
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we consider improving the efficiency of information-based
autonomous robot exploration in unknown and complex environments. We first
utilize Gaussian process (GP) regression to learn a surrogate model to infer
the confidence-rich mutual information (CRMI) of querying control actions, then
adopt an objective function consisting of predicted CRMI values and prediction
uncertainties to conduct Bayesian optimization (BO), i.e., GP-based BO (GPBO).
The trade-off between the best action with the highest CRMI value
(exploitation) and the action with high prediction variance (exploration) can
be realized. To further improve the efficiency of GPBO, we propose a novel
lightweight information gain inference method based on Bayesian kernel
inference and optimization (BKIO), achieving an approximate logarithmic
complexity without the need for training. BKIO can also infer the CRMI and
generate the best action using BO with bounded cumulative regret, which ensures
its comparable accuracy to GPBO with much higher efficiency. Extensive
numerical and real-world experiments show the desired efficiency of our
proposed methods without losing exploration performance in different
unstructured, cluttered environments. We also provide our open-source
implementation code at https://github.com/Shepherd-Gregory/BKIO-Exploration.
- Abstract(参考訳): 本稿では,未知・複雑な環境における情報に基づく自律型ロボット探索の効率化を検討する。
まず,gaussian process (gp) 回帰を用いてサロゲートモデルを学習し,制御行動の信頼度の高い相互情報 (crmi) を推定し,次に予測crmi値と予測不確実性からなる目的関数を適用し,ベイズ最適化 (bo, gp-based bo (gpbo) を行う。
CRMI値が最も高いベストアクション(探索)と高い予測分散(探索)のトレードオフを実現することができる。
GPBOの効率をさらに向上するために,ベイジアンカーネル推論と最適化(BKIO)に基づく新しい軽量情報ゲイン推定手法を提案する。
また、BKIOはCRMIを推測し、累積的後悔を伴うBOを用いた最良のアクションを生成することができるため、GPBOに匹敵する精度をはるかに高い効率で確保できる。
広範囲な数値実験と実世界の実験により, 異なる非構造環境における探索性能を損なうことなく, 提案手法の所望の効率を示す。
オープンソース実装コードもhttps://github.com/Shepherd-Gregory/BKIO-Explorationで公開しています。
関連論文リスト
- Bayesian Optimization for Hyperparameters Tuning in Neural Networks [0.0]
ベイズ最適化 (Bayesian Optimization) は、連続的な入力と限られた評価予算を持つブラックボックス関数に適した微分自由大域最適化手法である。
本研究では,畳み込みニューラルネットワーク(CNN)の強化を目的としたニューラルネットワークのハイパーパラメータチューニングにおけるBOの適用について検討する。
実験結果から,BOは探索と利用のバランスを効果的に保ち,CNNアーキテクチャの最適設定に向けて急速に収束することが明らかとなった。
このアプローチは、ニューラルネットワークチューニングの自動化におけるBOの可能性を強調し、機械学習パイプラインの精度と計算効率の改善に寄与する。
論文 参考訳(メタデータ) (2024-10-29T09:23:24Z) - Cost-Sensitive Multi-Fidelity Bayesian Optimization with Transfer of Learning Curve Extrapolation [55.75188191403343]
各ユーザが事前に定義した機能であるユーティリティを導入し,BOのコストと性能のトレードオフについて述べる。
このアルゴリズムをLCデータセット上で検証した結果,従来のマルチファイルBOや転送BOベースラインよりも優れていた。
論文 参考訳(メタデータ) (2024-05-28T07:38:39Z) - Bigger, Regularized, Optimistic: scaling for compute and sample-efficient continuous control [1.1404490220482764]
BROは、犬とヒューマノイドのタスクにおいて、ほぼ最適ポリシーを達成するためのモデルフリーのアルゴリズムである。
BROは最先端の結果を達成し、主要なモデルベースおよびモデルフリーアルゴリズムを著しく上回っている。
BROは、非常に難しい犬とヒューマノイドのタスクにおいて、ほぼ最適なポリシーを達成した最初のモデルなしアルゴリズムである。
論文 参考訳(メタデータ) (2024-05-25T09:53:25Z) - Reinforced In-Context Black-Box Optimization [64.25546325063272]
RIBBOは、オフラインデータからエンドツーエンドでBBOアルゴリズムを強化学習する手法である。
RIBBOは、複数の動作アルゴリズムとタスクによって生成される最適化履歴を学習するために、表現的なシーケンスモデルを使用している。
提案手法の中心となるのは,テキストレグレット・ツー・ゴートークンによる最適化履歴の増大である。
論文 参考訳(メタデータ) (2024-02-27T11:32:14Z) - Poisson Process for Bayesian Optimization [126.51200593377739]
本稿では、Poissonプロセスに基づくランキングベースの代理モデルを提案し、Poisson Process Bayesian Optimization(PoPBO)と呼ばれる効率的なBOフレームワークを提案する。
従来のGP-BO法と比較すると,PoPBOはコストが低く,騒音に対する堅牢性も良好であり,十分な実験により検証できる。
論文 参考訳(メタデータ) (2024-02-05T02:54:50Z) - PG-LBO: Enhancing High-Dimensional Bayesian Optimization with
Pseudo-Label and Gaussian Process Guidance [31.585328335396607]
現在の主流の手法は、ラベルのないデータのプールを利用して潜在空間を構築する可能性を見落としている。
ラベル付きデータのガイダンスを用いてラベル付きデータを効果的に活用するための新しい手法を提案する。
提案手法は,様々な最適化シナリオにおいて,既存のVAE-BOアルゴリズムよりも優れている。
論文 参考訳(メタデータ) (2023-12-28T11:57:58Z) - Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels [57.46832672991433]
ケルネル学習とBayesian Spike-and-Slab pres (KBASS)に基づく新しい方程式探索法を提案する。
カーネルレグレッションを用いてターゲット関数を推定する。これはフレキシブルで表現力があり、データ空間やノイズに対してより堅牢である。
我々は,効率的な後部推論と関数推定のための予測伝搬予測最大化アルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-10-09T03:55:09Z) - Learning Regions of Interest for Bayesian Optimization with Adaptive
Level-Set Estimation [84.0621253654014]
本稿では,高信頼領域を適応的にフィルタするBALLETというフレームワークを提案する。
理論的には、BALLETは探索空間を効率的に縮小することができ、標準BOよりも厳密な後悔を示すことができる。
論文 参考訳(メタデータ) (2023-07-25T09:45:47Z) - Cauchy-Schwarz Regularized Autoencoder [68.80569889599434]
変分オートエンコーダ(VAE)は、強力で広く使われている生成モデルのクラスである。
GMMに対して解析的に計算できるCauchy-Schwarz分散に基づく新しい制約対象を導入する。
本研究の目的は,密度推定,教師なしクラスタリング,半教師なし学習,顔分析における変分自動エンコーディングモデルの改善である。
論文 参考訳(メタデータ) (2021-01-06T17:36:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。