Quantized Fourier and Polynomial Features for more Expressive Tensor
Network Models
- URL: http://arxiv.org/abs/2309.05436v3
- Date: Tue, 12 Mar 2024 10:18:09 GMT
- Title: Quantized Fourier and Polynomial Features for more Expressive Tensor
Network Models
- Authors: Frederiek Wesel, Kim Batselier
- Abstract summary: We exploit the tensor structure present in the features by constraining the model weights to be an underparametrized tensor network.
We show that, for the same number of model parameters, the resulting quantized models have a higher bound on the VC-dimension as opposed to their non-quantized counterparts.
- Score: 9.18287948559108
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the context of kernel machines, polynomial and Fourier features are
commonly used to provide a nonlinear extension to linear models by mapping the
data to a higher-dimensional space. Unless one considers the dual formulation
of the learning problem, which renders exact large-scale learning unfeasible,
the exponential increase of model parameters in the dimensionality of the data
caused by their tensor-product structure prohibits to tackle high-dimensional
problems. One of the possible approaches to circumvent this exponential scaling
is to exploit the tensor structure present in the features by constraining the
model weights to be an underparametrized tensor network. In this paper we
quantize, i.e. further tensorize, polynomial and Fourier features. Based on
this feature quantization we propose to quantize the associated model weights,
yielding quantized models. We show that, for the same number of model
parameters, the resulting quantized models have a higher bound on the
VC-dimension as opposed to their non-quantized counterparts, at no additional
computational cost while learning from identical features. We verify
experimentally how this additional tensorization regularizes the learning
problem by prioritizing the most salient features in the data and how it
provides models with increased generalization capabilities. We finally
benchmark our approach on large regression task, achieving state-of-the-art
results on a laptop computer.
Related papers
- Scaling and renormalization in high-dimensional regression [72.59731158970894]
This paper presents a succinct derivation of the training and generalization performance of a variety of high-dimensional ridge regression models.
We provide an introduction and review of recent results on these topics, aimed at readers with backgrounds in physics and deep learning.
arXiv Detail & Related papers (2024-05-01T15:59:00Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Theory on variational high-dimensional tensor networks [2.0307382542339485]
We investigate the emergent statistical properties of random high-dimensional-network states and the trainability of tensoral networks.
We prove that variational high-dimensional networks suffer from barren plateaus for global loss functions.
Our results pave a way for their future theoretical studies and practical applications.
arXiv Detail & Related papers (2023-03-30T15:26:30Z) - Scaling Pre-trained Language Models to Deeper via Parameter-efficient
Architecture [68.13678918660872]
We design a more capable parameter-sharing architecture based on matrix product operator (MPO)
MPO decomposition can reorganize and factorize the information of a parameter matrix into two parts.
Our architecture shares the central tensor across all layers for reducing the model size.
arXiv Detail & Related papers (2023-03-27T02:34:09Z) - Low-Rank Tensor Function Representation for Multi-Dimensional Data
Recovery [52.21846313876592]
Low-rank tensor function representation (LRTFR) can continuously represent data beyond meshgrid with infinite resolution.
We develop two fundamental concepts for tensor functions, i.e., the tensor function rank and low-rank tensor function factorization.
Our method substantiates the superiority and versatility of our method as compared with state-of-the-art methods.
arXiv Detail & Related papers (2022-12-01T04:00:38Z) - Interaction Decompositions for Tensor Network Regression [0.0]
We show how to assess the relative importance of different regressors as a function of their degree.
We introduce a new type of tensor network model that is explicitly trained on only a small subset of interaction degrees.
This suggests that standard tensor network models utilize their regressors in an inefficient manner, with the lower degree terms vastly underutilized.
arXiv Detail & Related papers (2022-08-11T20:17:27Z) - Equivariant vector field network for many-body system modeling [65.22203086172019]
Equivariant Vector Field Network (EVFN) is built on a novel equivariant basis and the associated scalarization and vectorization layers.
We evaluate our method on predicting trajectories of simulated Newton mechanics systems with both full and partially observed data.
arXiv Detail & Related papers (2021-10-26T14:26:25Z) - Large-Scale Learning with Fourier Features and Tensor Decompositions [3.6930948691311007]
We exploit the tensor product structure of deterministic Fourier features, which enables us to represent the model parameters as a low-rank tensor decomposition.
We demonstrate by means of numerical experiments how our low-rank tensor approach obtains the same performance of the corresponding nonparametric model.
arXiv Detail & Related papers (2021-09-03T14:12:53Z) - Low-Rank and Sparse Enhanced Tucker Decomposition for Tensor Completion [3.498620439731324]
We introduce a unified low-rank and sparse enhanced Tucker decomposition model for tensor completion.
Our model possesses a sparse regularization term to promote a sparse core tensor, which is beneficial for tensor data compression.
It is remarkable that our model is able to deal with different types of real-world data sets, since it exploits the potential periodicity and inherent correlation properties appeared in tensors.
arXiv Detail & Related papers (2020-10-01T12:45:39Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
We propose a higher-order LSTM model that can efficiently learn long-term correlations in the video sequence.
This is accomplished through a novel tensor train module that performs prediction by combining convolutional features across time.
Our results achieve state-of-the-art performance-art in a wide range of applications and datasets.
arXiv Detail & Related papers (2020-02-21T05:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.