TensorGRaD: Tensor Gradient Robust Decomposition for Memory-Efficient Neural Operator Training
- URL: http://arxiv.org/abs/2501.02379v2
- Date: Fri, 30 May 2025 21:08:32 GMT
- Title: TensorGRaD: Tensor Gradient Robust Decomposition for Memory-Efficient Neural Operator Training
- Authors: Sebastian Loeschcke, David Pitt, Robert Joseph George, Jiawei Zhao, Cheng Luo, Yuandong Tian, Jean Kossaifi, Anima Anandkumar,
- Abstract summary: We introduce textbfTensorGRaD, a novel method that directly addresses the memory challenges associated with large-structured weights.<n>We show that sparseGRaD reduces total memory usage by over $50%$ while maintaining and sometimes even improving accuracy.
- Score: 91.8932638236073
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Scientific problems require resolving multi-scale phenomena across different resolutions and learning solution operators in infinite-dimensional function spaces. Neural operators provide a powerful framework for this, using tensor-parameterized layers to capture complex, multi-dimensional relationships. However, scaling neural operators to high-resolution problems leads to significant computational demands, making the training of industrial-scale models prohibitive. In this work, we introduce \textbf{TensorGRaD}, a novel method that directly addresses the memory challenges associated with optimizing large tensor-structured weights. Our approach, based on a \texit{robust tensor decomposition}, factorizes gradients as the sum of a low-rank tensor and a sparse one to efficiently capture information within optimizer states, including outliers. Additionally, we provide a recipe for mixed precision training of TensorGRaD, achieving further memory savings without sacrificing accuracy. We showcase the effectiveness of TensorGRaD on Fourier Neural Operators, a class of models crucial for solving partial differential equations (PDE). We provide theoretical guarantees for TensorGRaD, demonstrating its fundamental advantage over matrix-based gradient compression methods. We empirically demonstrate large improvements across various PDE tasks, including the challenging turbulent Navier-Stokes case at a Reynolds number of $10^5$. TensorGRaD reduces total memory usage by over $50\%$ while maintaining and sometimes even improving accuracy.
Related papers
- tCURLoRA: Tensor CUR Decomposition Based Low-Rank Parameter Adaptation and Its Application in Medical Image Segmentation [1.3281936946796913]
Transfer learning, by leveraging knowledge from pre-trained models, has significantly enhanced the performance of target tasks.<n>As deep neural networks scale up, full fine-tuning introduces substantial computational and storage challenges.<n>We propose tCURLoRA, a novel fine-tuning method based on tensor CUR decomposition.
arXiv Detail & Related papers (2025-01-04T08:25:32Z) - SMMF: Square-Matricized Momentum Factorization for Memory-Efficient Optimization [0.5755004576310332]
SMMF is a memory-efficient that reduces the memory requirement of the widely used adaptive learning rate Matrix, such as Adam, by up to 96%.<n>We conduct a regret bound analysis of SMMF, which shows that it converges similarly to non-memory-efficient adaptive learning rate Matrix, such as AdamNC.<n>In our experiment, SMMF takes up to 96% less memory compared to state-of-the-art memory efficients, e.g., Adafactor, CAME, and SM3, while achieving comparable model performance.
arXiv Detail & Related papers (2024-12-12T03:14:50Z) - Over-parameterized Student Model via Tensor Decomposition Boosted Knowledge Distillation [10.48108719012248]
We focus on Knowledge Distillation (KD), where a compact student model is trained to mimic a larger teacher model.
In contrast to much of the previous work, we scale up the parameters of the student model during training.
arXiv Detail & Related papers (2024-11-10T12:40:59Z) - DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [60.58067866537143]
We introduce DimOL (Dimension-aware Operator Learning), drawing insights from dimensional analysis.<n>To implement DimOL, we propose the ProdLayer, which can be seamlessly integrated into FNO-based and Transformer-based PDE solvers.<n> Empirically, DimOL models achieve up to 48% performance gain within the PDE datasets.
arXiv Detail & Related papers (2024-10-08T10:48:50Z) - Computational and Statistical Guarantees for Tensor-on-Tensor Regression with Tensor Train Decomposition [27.29463801531576]
We study the theoretical and algorithmic aspects of the TT-based ToT regression model.<n>We propose two algorithms to efficiently find solutions to constrained error bounds.<n>We establish the linear convergence rate of both IHT and RGD.
arXiv Detail & Related papers (2024-06-10T03:51:38Z) - Multi-Grid Tensorized Fourier Neural Operator for High-Resolution PDEs [93.82811501035569]
We introduce a new data efficient and highly parallelizable operator learning approach with reduced memory requirement and better generalization.
MG-TFNO scales to large resolutions by leveraging local and global structures of full-scale, real-world phenomena.
We demonstrate superior performance on the turbulent Navier-Stokes equations where we achieve less than half the error with over 150x compression.
arXiv Detail & Related papers (2023-09-29T20:18:52Z) - Geometry-Informed Neural Operator for Large-Scale 3D PDEs [76.06115572844882]
We propose the geometry-informed neural operator (GINO) to learn the solution operator of large-scale partial differential equations.
We successfully trained GINO to predict the pressure on car surfaces using only five hundred data points.
arXiv Detail & Related papers (2023-09-01T16:59:21Z) - Winner-Take-All Column Row Sampling for Memory Efficient Adaptation of Language Model [89.8764435351222]
We propose a new family of unbiased estimators called WTA-CRS, for matrix production with reduced variance.
Our work provides both theoretical and experimental evidence that, in the context of tuning transformers, our proposed estimators exhibit lower variance compared to existing ones.
arXiv Detail & Related papers (2023-05-24T15:52:08Z) - Symbolic Regression on FPGAs for Fast Machine Learning Inference [2.0920303420933273]
High-energy physics community is investigating the potential of deploying machine-learning-based solutions on Field-Programmable Gate Arrays (FPGAs)
We introduce a novel end-to-end procedure that utilizes a machine learning technique called symbolic regression (SR)
We show that our approach can approximate a 3-layer neural network using an inference model that achieves up to a 13-fold decrease in execution time, down to 5 ns, while still preserving more than 90% approximation accuracy.
arXiv Detail & Related papers (2023-05-06T17:04:02Z) - Low-Rank Tensor Function Representation for Multi-Dimensional Data
Recovery [52.21846313876592]
Low-rank tensor function representation (LRTFR) can continuously represent data beyond meshgrid with infinite resolution.
We develop two fundamental concepts for tensor functions, i.e., the tensor function rank and low-rank tensor function factorization.
Our method substantiates the superiority and versatility of our method as compared with state-of-the-art methods.
arXiv Detail & Related papers (2022-12-01T04:00:38Z) - Truncated tensor Schatten p-norm based approach for spatiotemporal
traffic data imputation with complicated missing patterns [77.34726150561087]
We introduce four complicated missing patterns, including missing and three fiber-like missing cases according to the mode-drivenn fibers.
Despite nonity of the objective function in our model, we derive the optimal solutions by integrating alternating data-mputation method of multipliers.
arXiv Detail & Related papers (2022-05-19T08:37:56Z) - SHINE: SHaring the INverse Estimate from the forward pass for bi-level
optimization and implicit models [15.541264326378366]
In recent years, implicit deep learning has emerged as a method to increase the depth of deep neural networks.
The training is performed as a bi-level problem, and its computational complexity is partially driven by the iterative inversion of a huge Jacobian matrix.
We propose a novel strategy to tackle this computational bottleneck from which many bi-level problems suffer.
arXiv Detail & Related papers (2021-06-01T15:07:34Z) - Scaling and Scalability: Provable Nonconvex Low-Rank Tensor Estimation
from Incomplete Measurements [30.395874385570007]
A fundamental task is to faithfully recover tensors from highly incomplete measurements.
We develop an algorithm to directly recover the tensor factors in the Tucker decomposition.
We show that it provably converges at a linear independent rate of the ground truth tensor for two canonical problems.
arXiv Detail & Related papers (2021-04-29T17:44:49Z) - Fourier Neural Operator for Parametric Partial Differential Equations [57.90284928158383]
We formulate a new neural operator by parameterizing the integral kernel directly in Fourier space.
We perform experiments on Burgers' equation, Darcy flow, and Navier-Stokes equation.
It is up to three orders of magnitude faster compared to traditional PDE solvers.
arXiv Detail & Related papers (2020-10-18T00:34:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.