論文の概要: Learning Semantic Segmentation with Query Points Supervision on Aerial Images
- arxiv url: http://arxiv.org/abs/2309.05490v2
- Date: Mon, 5 Aug 2024 18:57:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-07 19:41:33.892485
- Title: Learning Semantic Segmentation with Query Points Supervision on Aerial Images
- Title(参考訳): 航空画像に基づく問合せ点を用いたセマンティックセグメンテーションの学習
- Authors: Santiago Rivier, Carlos Hinojosa, Silvio Giancola, Bernard Ghanem,
- Abstract要約: セマンティックセグメンテーションアルゴリズムを学習するための弱教師付き学習アルゴリズムを提案する。
提案手法は正確なセマンティックセグメンテーションを行い,手作業のアノテーションに要するコストと時間を大幅に削減することで効率を向上する。
- 参考スコア(独自算出の注目度): 57.09251327650334
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic segmentation is crucial in remote sensing, where high-resolution satellite images are segmented into meaningful regions. Recent advancements in deep learning have significantly improved satellite image segmentation. However, most of these methods are typically trained in fully supervised settings that require high-quality pixel-level annotations, which are expensive and time-consuming to obtain. In this work, we present a weakly supervised learning algorithm to train semantic segmentation algorithms that only rely on query point annotations instead of full mask labels. Our proposed approach performs accurate semantic segmentation and improves efficiency by significantly reducing the cost and time required for manual annotation. Specifically, we generate superpixels and extend the query point labels into those superpixels that group similar meaningful semantics. Then, we train semantic segmentation models supervised with images partially labeled with the superpixel pseudo-labels. We benchmark our weakly supervised training approach on an aerial image dataset and different semantic segmentation architectures, showing that we can reach competitive performance compared to fully supervised training while reducing the annotation effort. The code of our proposed approach is publicly available at: https://github.com/santiago2205/LSSQPS.
- Abstract(参考訳): セマンティックセグメンテーションは、高解像度の衛星画像が意味のある領域に分割されるリモートセンシングにおいて重要である。
近年のディープラーニングは衛星画像のセグメンテーションを大幅に改善している。
しかし、これらの手法の多くは、高画質のピクセルレベルのアノテーションを必要とする完全に教師された設定で訓練されている。
本研究では,完全なマスクラベルの代わりにクエリポイントアノテーションのみに依存するセマンティックセグメンテーションアルゴリズムを訓練するための,弱教師付き学習アルゴリズムを提案する。
提案手法は正確なセマンティックセグメンテーションを行い,手作業のアノテーションに要するコストと時間を大幅に削減することで効率を向上する。
具体的にはスーパーピクセルを生成し、クエリポイントラベルを同様の意味的意味論をグループ化するスーパーピクセルに拡張する。
次に,スーパーピクセルの擬似ラベルを部分的にラベル付けした画像で教師付きセマンティックセマンティックセマンティクスモデルを訓練する。
航空画像データセットと異なるセマンティックセグメンテーションアーキテクチャを用いて、弱教師付きトレーニングアプローチをベンチマークし、アノテーションの労力を削減しつつ、完全に教師付きトレーニングと比較して、競争性能に到達できることを示す。
提案手法のコードは、https://github.com/santiago2205/LSSQPS.comで公開されている。
関連論文リスト
- Location-Aware Self-Supervised Transformers [74.76585889813207]
画像部品の相対的な位置を予測し,セマンティックセグメンテーションのためのネットワークを事前訓練する。
参照パッチのサブセットを問合せのサブセットにマスキングすることで,タスクの難しさを制御します。
実験により,この位置認識事前学習が,いくつかの難解なセマンティックセグメンテーションベンチマークに競合する表現をもたらすことが示された。
論文 参考訳(メタデータ) (2022-12-05T16:24:29Z) - A Pixel-Level Meta-Learner for Weakly Supervised Few-Shot Semantic
Segmentation [40.27705176115985]
Few-shotのセマンティックセマンティックセグメンテーションは、興味のある新しいクラスのために、地上の真実のピクセルレベルのラベルを持つ少数の画像しか利用できない学習タスクに対処する。
限られたデータとその意味ラベルから擬似画素レベルのセグメンテーションマスクを予測するメタラーニングフレームワークを提案する。
提案する学習モデルは,画素レベルのメタラーナーとみなすことができる。
論文 参考訳(メタデータ) (2021-11-02T08:28:11Z) - Maximize the Exploration of Congeneric Semantics for Weakly Supervised
Semantic Segmentation [27.155133686127474]
グラフニューラルネットワーク(P-GNN)を,同一のクラスラベルを含む異なる画像からの自己検出パッチに基づいて構築する。
PASCAL VOC 2012ベンチマークで実験を行い、そのモデルにより最先端の性能が得られた。
論文 参考訳(メタデータ) (2021-10-08T08:59:16Z) - Universal Weakly Supervised Segmentation by Pixel-to-Segment Contrastive
Learning [28.498782661888775]
半教師付きメトリック学習問題として弱教師付きセグメンテーションを定式化する。
特徴空間における画素とセグメント間のコントラスト関係を4種類提案する。
我々はPascal VOCとDensePoseに大きな利益をもたらす、普遍的な弱教師付きセグメンタを提供する。
論文 参考訳(メタデータ) (2021-05-03T15:49:01Z) - A Closer Look at Self-training for Zero-Label Semantic Segmentation [53.4488444382874]
トレーニング中に見られないクラスをセグメント化できることは、ディープラーニングにおいて重要な技術的課題です。
事前のゼロラベルセマンティクスセグメンテーションは、ビジュアル・セマンティクスの埋め込みや生成モデルを学ぶことによってこのタスクにアプローチする。
本研究では,同一画像の異なる増分から生じる擬似ラベルの交点を取り出し,ノイズの多い擬似ラベルをフィルタリングする整合性正規化器を提案する。
論文 参考訳(メタデータ) (2021-04-21T14:34:33Z) - Exploring Cross-Image Pixel Contrast for Semantic Segmentation [130.22216825377618]
完全教師付きセッティングにおけるセマンティックセグメンテーションのための画素単位のコントラストフレームワークを提案する。
中心となる考え方は、同じセマンティッククラスに属するピクセルの埋め込みを、異なるクラスの埋め込みよりもよく似ているように強制することである。
テスト中に余分なオーバーヘッドを伴わずに既存のセグメンテーションフレームワークに懸命に組み込むことができる。
論文 参考訳(メタデータ) (2021-01-28T11:35:32Z) - Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation [49.90178055521207]
この研究は、画像レベルのアノテーションとピクセルレベルのセグメンテーションのギャップを埋めることを目標に、弱い監督されたセマンティックセグメンテーション(WSSS)に対処する。
画像群における意味的依存関係を明示的にモデル化し,より信頼性の高い擬似的基盤構造を推定する,新たなグループ学習タスクとしてWSSSを定式化する。
特に、入力画像がグラフノードとして表現されるグループ単位のセマンティックマイニングのためのグラフニューラルネットワーク(GNN)を考案する。
論文 参考訳(メタデータ) (2020-12-09T12:40:13Z) - PCAMs: Weakly Supervised Semantic Segmentation Using Point Supervision [12.284208932393073]
本稿では,ある点レベルのアノテーションが与えられた画像から意味的セグメンテーションを生成する新しい手法を提案する。
提案するCNNは,通常,地上の真理ラベルの代わりに擬似ラベルを用いて完全に教師される。
提案手法は,PASCAL VOC 2012 データセットを引用した PASCAL VOC 2012 のセマンティックセマンティックセマンティフィケーションのための技術結果の状態を達成し,より強いバウンディングボックスやリスグル管理のための技術手法よりも優れていた。
論文 参考訳(メタデータ) (2020-07-10T21:25:27Z) - Mining Cross-Image Semantics for Weakly Supervised Semantic Segmentation [128.03739769844736]
2つのニューラルコアテンションを分類器に組み込んで、画像間のセマンティックな類似点と相違点をキャプチャする。
オブジェクトパターン学習の強化に加えて、コアテンションは他の関連する画像からのコンテキストを活用して、ローカライズマップの推論を改善することができる。
提案アルゴリズムは,これらすべての設定に対して新たな最先端性を設定し,その有効性と一般化性を示す。
論文 参考訳(メタデータ) (2020-07-03T21:53:46Z) - Discovering Latent Classes for Semi-Supervised Semantic Segmentation [18.5909667833129]
本稿では,半教師付きセマンティックセグメンテーションの問題について検討する。
ラベル付き画像のセマンティッククラスと一致した潜在クラスを学習する。
提案手法は,半教師付きセマンティックセグメンテーションのための技術結果の状態を達成している。
論文 参考訳(メタデータ) (2019-12-30T14:16:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。