Incorporating Pre-trained Model Prompting in Multimodal Stock Volume
Movement Prediction
- URL: http://arxiv.org/abs/2309.05608v1
- Date: Mon, 11 Sep 2023 16:47:01 GMT
- Title: Incorporating Pre-trained Model Prompting in Multimodal Stock Volume
Movement Prediction
- Authors: Ruibo Chen, Zhiyuan Zhang, Yi Liu, Ruihan Bao, Keiko Harimoto, Xu Sun
- Abstract summary: We propose the Prompt-based MUltimodal Stock volumE prediction model (ProMUSE) to process text and time series modalities.
We use pre-trained language models for better comprehension of financial news.
We also propose a novel cross-modality contrastive alignment while reserving the unimodal heads beside the fusion head to mitigate this problem.
- Score: 22.949484374773967
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal stock trading volume movement prediction with stock-related news
is one of the fundamental problems in the financial area. Existing multimodal
works that train models from scratch face the problem of lacking universal
knowledge when modeling financial news. In addition, the models ability may be
limited by the lack of domain-related knowledge due to insufficient data in the
datasets. To handle this issue, we propose the Prompt-based MUltimodal Stock
volumE prediction model (ProMUSE) to process text and time series modalities.
We use pre-trained language models for better comprehension of financial news
and adopt prompt learning methods to leverage their capability in universal
knowledge to model textual information. Besides, simply fusing two modalities
can cause harm to the unimodal representations. Thus, we propose a novel
cross-modality contrastive alignment while reserving the unimodal heads beside
the fusion head to mitigate this problem. Extensive experiments demonstrate
that our proposed ProMUSE outperforms existing baselines. Comprehensive
analyses further validate the effectiveness of our architecture compared to
potential variants and learning mechanisms.
Related papers
- Missing Modality Prediction for Unpaired Multimodal Learning via Joint Embedding of Unimodal Models [6.610033827647869]
In real-world scenarios, consistently acquiring complete multimodal data presents significant challenges.
This often leads to the issue of missing modalities, where data for certain modalities are absent.
We propose a novel framework integrating parameter-efficient fine-tuning of unimodal pretrained models with a self-supervised joint-embedding learning method.
arXiv Detail & Related papers (2024-07-17T14:44:25Z) - When Parameter-efficient Tuning Meets General-purpose Vision-language
Models [65.19127815275307]
PETAL revolutionizes the training process by requiring only 0.5% of the total parameters, achieved through a unique mode approximation technique.
Our experiments reveal that PETAL not only outperforms current state-of-the-art methods in most scenarios but also surpasses full fine-tuning models in effectiveness.
arXiv Detail & Related papers (2023-12-16T17:13:08Z) - What Makes for Robust Multi-Modal Models in the Face of Missing
Modalities? [35.19295402483624]
We model the scenarios of multi-modal models encountering missing modalities from an information-theoretic perspective.
We introduce Uni-Modal Ensemble with Missing Modality Adaptation (UME-MMA)
UME-MMA employs uni-modal pre-trained weights for the multi-modal model to enhance feature extraction and utilizes missing modality data augmentation techniques to better adapt to situations with missing modalities.
arXiv Detail & Related papers (2023-10-10T07:47:57Z) - MinT: Boosting Generalization in Mathematical Reasoning via Multi-View
Fine-Tuning [53.90744622542961]
Reasoning in mathematical domains remains a significant challenge for small language models (LMs)
We introduce a new method that exploits existing mathematical problem datasets with diverse annotation styles.
Experimental results show that our strategy enables a LLaMA-7B model to outperform prior approaches.
arXiv Detail & Related papers (2023-07-16T05:41:53Z) - Learning Unseen Modality Interaction [54.23533023883659]
Multimodal learning assumes all modality combinations of interest are available during training to learn cross-modal correspondences.
We pose the problem of unseen modality interaction and introduce a first solution.
It exploits a module that projects the multidimensional features of different modalities into a common space with rich information preserved.
arXiv Detail & Related papers (2023-06-22T10:53:10Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
Large language models (LLMs) have led to a series of breakthroughs in natural language processing (NLP)
What further sets these models apart is the massive amounts of world knowledge they internalize during pretraining.
How the model's world knowledge interacts with the factual information presented in the context remains under explored.
arXiv Detail & Related papers (2022-11-09T18:58:29Z) - Adaptive Contrastive Learning on Multimodal Transformer for Review
Helpfulness Predictions [40.70793282367128]
We propose Multimodal Contrastive Learning for Multimodal Review Helpfulness Prediction (MRHP) problem.
In addition, we introduce Adaptive Weighting scheme for our contrastive learning approach.
Finally, we propose Multimodal Interaction module to address the unalignment nature of multimodal data.
arXiv Detail & Related papers (2022-11-07T13:05:56Z) - Discriminative Multimodal Learning via Conditional Priors in Generative
Models [21.166519800652047]
This research studies the realistic scenario in which all modalities and class labels are available for model training.
We show, in this scenario, that the variational lower bound limits mutual information between joint representations and missing modalities.
arXiv Detail & Related papers (2021-10-09T17:22:24Z) - Bi-Bimodal Modality Fusion for Correlation-Controlled Multimodal
Sentiment Analysis [96.46952672172021]
Bi-Bimodal Fusion Network (BBFN) is a novel end-to-end network that performs fusion on pairwise modality representations.
Model takes two bimodal pairs as input due to known information imbalance among modalities.
arXiv Detail & Related papers (2021-07-28T23:33:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.