論文の概要: Hypothesis Search: Inductive Reasoning with Language Models
- arxiv url: http://arxiv.org/abs/2309.05660v2
- Date: Thu, 30 May 2024 23:10:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-03 20:41:23.183513
- Title: Hypothesis Search: Inductive Reasoning with Language Models
- Title(参考訳): 仮説探索: 言語モデルによる帰納的推論
- Authors: Ruocheng Wang, Eric Zelikman, Gabriel Poesia, Yewen Pu, Nick Haber, Noah D. Goodman,
- Abstract要約: 最近の研究は「文脈学習」を直接促すことで帰納的推論タスクにおける大規模言語モデルの評価を行っている
これは単純な帰納的タスクではうまく機能するが、Abstraction and Reasoning Corpus (ARC)のような複雑なタスクではうまく機能しない。
本研究では,複数の抽象レベルで明示的な仮説を生成することにより,LLMの帰納的推論能力を向上させることを提案する。
- 参考スコア(独自算出の注目度): 39.03846394586811
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inductive reasoning is a core problem-solving capacity: humans can identify underlying principles from a few examples, which robustly generalize to novel scenarios. Recent work evaluates large language models (LLMs) on inductive reasoning tasks by directly prompting them yielding "in context learning." This works well for straightforward inductive tasks but performs poorly on complex tasks such as the Abstraction and Reasoning Corpus (ARC). In this work, we propose to improve the inductive reasoning ability of LLMs by generating explicit hypotheses at multiple levels of abstraction: we prompt the LLM to propose multiple abstract hypotheses about the problem, in natural language, then implement the natural language hypotheses as concrete Python programs. These programs can be verified by running on observed examples and generalized to novel inputs. To reduce the hypothesis search space, we explore steps to filter the set of hypotheses to implement: we either ask the LLM to summarize them into a smaller set of hypotheses or ask human annotators to select a subset. We verify our pipeline's effectiveness on the ARC visual inductive reasoning benchmark, its variant 1D-ARC, string transformation dataset SyGuS, and list transformation dataset List Functions. On a random 100-problem subset of ARC, our automated pipeline using LLM summaries achieves 30% accuracy, outperforming the direct prompting baseline (accuracy of 17%). With the minimal human input of selecting from LLM-generated candidates, performance is boosted to 33%. Our ablations show that both abstract hypothesis generation and concrete program representations benefit LLMs on inductive reasoning tasks.
- Abstract(参考訳): 帰納的推論(inductive reasoning)は、中核的な問題解決能力である。人間はいくつかの例から根底にある原則を特定でき、新しいシナリオにしっかりと一般化できる。
最近の研究は、帰納的推論タスクにおける大きな言語モデル(LLM)を評価し、直接的に「文脈学習」を行うように促している。
これは単純な帰納的タスクではうまく機能するが、Abstraction and Reasoning Corpus (ARC)のような複雑なタスクではうまく機能しない。
本研究では,複数の抽象レベルで明示的な仮説を生成することで,LLMの帰納的推論能力を向上させることを提案する。
これらのプログラムは、観察されたサンプル上で実行し、新しい入力に一般化することで検証することができる。
仮説探索空間を減らすために、我々は、実装すべき仮説の集合をフィルタリングするステップを探索する: LLMにそれらをより小さな仮説の集合にまとめるように依頼するか、あるいは人間のアノテータにサブセットを選択するよう依頼する。
我々は、ARC視覚誘導推論ベンチマーク、その変種1D-ARC、文字列変換データセットSyGuS、リスト変換データセットList Functionsにおけるパイプラインの有効性を検証する。
ARCの100プロブレムのランダムなサブセットでは、LLMサマリーを用いた自動パイプラインが30%の精度を実現し、直接プロンプトベースライン(精度17%)を上回った。
LLM生成候補から選択する人の最小限の入力により、パフォーマンスは33%向上する。
提案手法は,抽象的仮説生成と具体的なプログラム表現の両方が帰納的推論タスクにおいて LLM に有効であることを示す。
関連論文リスト
- EXPLORA: Efficient Exemplar Subset Selection for Complex Reasoning [5.172620636569522]
大規模言語モデル (LLMs) は文脈内学習 (ICL) を可能にしており、LLMはいくつかの実演サンプル(例)を使って特定のタスクにおいて習熟度を取得できる。
ICLにおける重要な課題は、タスク特化(静的)またはテスト特化(動的)のいずれかが可能な最適例の選択である。
論文 参考訳(メタデータ) (2024-11-06T12:48:04Z) - CLOMO: Counterfactual Logical Modification with Large Language Models [109.60793869938534]
本稿では,新しいタスク,CLOMO(Counterfactual Logical Modification)と高品質な人間アノテーションベンチマークを紹介する。
このタスクでは、LLMは所定の論理的関係を維持するために、与えられた議論的テキストを順応的に変更しなければなりません。
LLMの自然言語出力を直接評価する革新的な評価指標である自己評価スコア(SES)を提案する。
論文 参考訳(メタデータ) (2023-11-29T08:29:54Z) - Zero-Shot Question Answering over Financial Documents using Large
Language Models [0.18749305679160366]
我々は,財務報告に対するマルチホップ数値推論を必要とする複雑な問題に答えるために,大規模言語モデル(LLM)に基づくアプローチを導入する。
LLMを誘導する新しいゼロショットプロンプトを使用して、必要な推論をPythonプログラムやドメイン固有言語にエンコードします。
論文 参考訳(メタデータ) (2023-11-19T16:23:34Z) - Phenomenal Yet Puzzling: Testing Inductive Reasoning Capabilities of Language Models with Hypothesis Refinement [92.61557711360652]
言語モデル(LM)は、しばしば帰納的推論に不足する。
我々は,反復的仮説修正を通じて,LMの帰納的推論能力を体系的に研究する。
本研究は, LMの誘導的推論過程と人間とのいくつかの相違点を明らかにし, 誘導的推論タスクにおけるLMの使用の可能性と限界に光を当てる。
論文 参考訳(メタデータ) (2023-10-12T17:51:10Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
大規模言語モデル(LLM)は、形式的知識表現(KR)システムの様々な制限を克服する能力を示した。
LLMは誘導的推論において最も優れているが、誘導的推論では最も効果が低い。
モデルの性能を評価するため,シングルタスクトレーニング,マルチタスクトレーニング,および「チェーンオブ思考」知識蒸留細調整技術について検討した。
論文 参考訳(メタデータ) (2023-10-02T01:00:50Z) - SatLM: Satisfiability-Aided Language Models Using Declarative Prompting [68.40726892904286]
本研究では,大規模言語モデル (LLM) の推論能力を向上させるために,新しい満足度支援言語モデリング (SatLM) 手法を提案する。
我々はLLMを用いて命令型プログラムではなく宣言型タスク仕様を生成し、既製の自動定理証明器を利用して最終解を導出する。
我々はSATLMを8つの異なるデータセット上で評価し、命令パラダイムにおいてプログラム支援されたLMよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-05-16T17:55:51Z) - Large Language Models are Better Reasoners with Self-Verification [48.534270563880845]
大規模言語モデル(LLM)は、いくつかの自然言語処理タスクにおいて強力な推論能力を示している。
思考の連鎖(CoT)を促進させるLLMは、個別のミスに非常に敏感な、多段階のプロンプトと多段階の予測を必要とする。
また,LLMにも同様な自己検証能力があることを示す。
論文 参考訳(メタデータ) (2022-12-19T15:51:52Z) - Beyond Distributional Hypothesis: Let Language Models Learn Meaning-Text
Correspondence [45.9949173746044]
大規模事前学習言語モデル (PLM) が論理否定特性 (LNP) を満たさないことを示す。
そこで本研究では,意味テキスト対応を直接学習するための新しい中間訓練課題である「意味マッチング」を提案する。
このタスクにより、PLMは語彙意味情報を学習することができる。
論文 参考訳(メタデータ) (2022-05-08T08:37:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。