論文の概要: Large Language Model for Science: A Study on P vs. NP
- arxiv url: http://arxiv.org/abs/2309.05689v1
- Date: Mon, 11 Sep 2023 17:49:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-13 15:38:34.926557
- Title: Large Language Model for Science: A Study on P vs. NP
- Title(参考訳): 科学のための大規模言語モデル:P vs. NPに関する研究
- Authors: Qingxiu Dong, Li Dong, Ke Xu, Guangyan Zhou, Yaru Hao, Zhifang Sui,
Furu Wei
- Abstract要約: 大規模言語モデル(LLM)を用いて,P対NP問題の研究を促進・促進する。
具体的には、複雑な問題解決のためのLLMを用いた奥行き思考を促進する一般的なフレームワークであるソクラティック推論を提案する。
我々のP対NP問題に関するパイロット研究は、GPT-4が証明スキーマの生成に成功し、97の対話ターンを通して厳密な推論を行うことを示した。
- 参考スコア(独自算出の注目度): 88.67249044141529
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we use large language models (LLMs) to augment and accelerate
research on the P versus NP problem, one of the most important open problems in
theoretical computer science and mathematics. Specifically, we propose Socratic
reasoning, a general framework that promotes in-depth thinking with LLMs for
complex problem-solving. Socratic reasoning encourages LLMs to recursively
discover, solve, and integrate problems while facilitating self-evaluation and
refinement. Our pilot study on the P vs. NP problem shows that GPT-4
successfully produces a proof schema and engages in rigorous reasoning
throughout 97 dialogue turns, concluding "P $\neq$ NP", which is in alignment
with (Xu and Zhou, 2023). The investigation uncovers novel insights within the
extensive solution space of LLMs, shedding light on LLM for Science.
- Abstract(参考訳): 本研究では、理論計算機科学と数学において最も重要な開問題の一つであるP対NP問題の研究を拡大・加速するために、大規模言語モデル(LLM)を用いる。
具体的には,複雑な問題解決のために llm を用いた深い思考を促進する汎用フレームワーク socratic reasoning を提案する。
ソクラテス的推論は、LLMが自己評価と改善を促進しながら問題を再帰的に発見し、解決し、統合することを奨励する。
P vs. NP問題に関するパイロット研究は、GPT-4が証明スキーマの生成に成功し、「P $\neq$ NP」を含む97の対話ターンを通して厳密な推論を行うことを示した(Xu and Zhou, 2023)。
この調査は、LLMの広範なソリューション空間における新たな洞察を明らかにし、LLM for Scienceに光を当てた。
関連論文リスト
- Can Large Language Models Reason? A Characterization via 3-SAT [11.422434149376478]
大規模言語モデル(LLM)は高度な推論能力を持つAIモデルとして評価されている。
近年の研究では、LLMは、しばしばショートカットを使用した真の推論を回避し、懐疑論を引き起こすことが示されている。
本稿では,論理的推論と制約満足度タスクの中核に位置するNP完全問題である 3-SAT を中心にした実験プロトコルを提案する。
論文 参考訳(メタデータ) (2024-08-13T21:54:10Z) - Reasoning with Large Language Models, a Survey [2.831296564800826]
本稿では,LSMによるプロンプトベース推論の急速に進展する分野について概説する。
我々の分類学は、多段階推論の生成、評価、制御の異なる方法を特定します。
我々は, 自己改善, 自己回帰, 推論過程のいくつかのメタ能力が, プロンプトの司法的利用によって可能であることを発見した。
論文 参考訳(メタデータ) (2024-07-16T08:49:35Z) - Reinforcement Learning Problem Solving with Large Language Models [0.0]
大規模言語モデル (LLM) には膨大な量の世界知識があり、自然言語処理 (NLP) タスクの性能向上のために様々な分野に応用できるようになっている。
これはまた、人間とAIシステム間の会話に基づく対話による、意図した問題を解決するための、よりアクセスしやすいパラダイムを促進する。
研究科学者」と「レガリー・マター・インテーク」の2つの詳細なケーススタディを通して、我々のアプローチの実践性を示す。
論文 参考訳(メタデータ) (2024-04-29T12:16:08Z) - Distilling Algorithmic Reasoning from LLMs via Explaining Solution Programs [2.3020018305241337]
大きな言語モデルの推論能力を改善する効果的な方法として、明確な推論経路を蒸留する手法が登場している。
本稿では, LLM から推論能力を抽出する手法を提案する。
提案実験は,ReasonerがCoderによるプログラム実装をより効果的にガイドできることを示す。
論文 参考訳(メタデータ) (2024-04-11T22:19:50Z) - Logic Query of Thoughts: Guiding Large Language Models to Answer Complex Logic Queries with Knowledge Graphs [102.37496443389203]
LGOT(Logic-Query-of-Thoughts)は知識グラフ推論と大規模言語モデルを組み合わせた最初の方法である。
実験の結果,ChatGPTよりも20%向上した。
論文 参考訳(メタデータ) (2024-03-17T17:01:45Z) - Self-Discover: Large Language Models Self-Compose Reasoning Structures [136.48389510481758]
タスク固有の推論構造を自己発見するフレームワークであるSELF-DISCOVERを紹介する。
SELF-DISCOVERは、挑戦的推論ベンチマークにおいて、GPT-4とPaLM 2の性能を大幅に改善する。
自己発見推論構造は、モデルファミリー全体にわたって普遍的に適用可能であることを示す。
論文 参考訳(メタデータ) (2024-02-06T01:13:53Z) - Do Language Models Exhibit the Same Cognitive Biases in Problem Solving as Human Learners? [140.9751389452011]
本研究では,大言語モデル(LLM)の偏りを,算術語問題を解く際に,子どもに知られているものと関連づけて検討する。
我々は,これらの各テストに対して,問題特徴のきめ細かい制御を可能にするニューロシンボリックアプローチを用いて,新しい単語問題を生成する。
論文 参考訳(メタデータ) (2024-01-31T18:48:20Z) - Thought Propagation: An Analogical Approach to Complex Reasoning with Large Language Models [62.96551299003463]
大規模言語モデルの複雑な推論能力を高めるために,textbftextitThought Propagation (TP)を提案する。
TP はまず LLM に対して,入力問題に関連する類似問題の集合を提案し,解決するよう促す。
TPは、類似問題の結果を再利用して、新しいソリューションを直接生成したり、スクラッチから得られた初期ソリューションを修正するための知識集約的な実行プランを導出する。
論文 参考訳(メタデータ) (2023-10-06T01:40:09Z) - NLPBench: Evaluating Large Language Models on Solving NLP Problems [41.01588131136101]
大規模言語モデル(LLM)は、自然言語処理(NLP)の能力を高めることを約束している。
イェール大学の最終試験から得られた様々なNLPトピックにまたがる378の大学レベルのNLP質問を含む,ユニークなベンチマークデータセットであるNLPBenchを提案する。
GPT-3.5/4, PaLM-2, LLAMA-2などのLCMに着目した評価では, チェーン・オブ・シークレット(CoT)やツリー・オブ・シークレット(ToT)といった先進的なプロンプト戦略が取り入れられている。
論文 参考訳(メタデータ) (2023-09-27T13:02:06Z) - PAL: Program-aided Language Models [112.94785609781503]
自然言語問題を理解するために,プログラム支援言語モデル(PaL)を提案する。
PaLはソリューションステップをPythonインタプリタのようなプログラムランタイムにオフロードする。
私たちは12のベンチマークで新しい最先端の結果を設定しました。
論文 参考訳(メタデータ) (2022-11-18T18:56:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。