Quantum control and Berry phase of electron spins in rotating levitated diamonds in high vacuum
- URL: http://arxiv.org/abs/2309.05821v2
- Date: Sun, 17 Mar 2024 12:51:45 GMT
- Title: Quantum control and Berry phase of electron spins in rotating levitated diamonds in high vacuum
- Authors: Yuanbin Jin, Kunhong Shen, Peng Ju, Xingyu Gao, Chong Zu, Alejandro J. Grine, Tongcang Li,
- Abstract summary: Levitated diamond particles in high vacuum with internal spin qubits have been proposed for exploring quantum mechanics.
We fabricate an integrated surface ion trap with multiple stabilization electrodes.
This facilitates on-chip levitation and, for the first time, optically detected magnetic resonance measurements of a nanodiamond levitated in high vacuum.
- Score: 40.27879500842531
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Levitated diamond particles in high vacuum with internal spin qubits have been proposed for exploring macroscopic quantum mechanics, quantum gravity, and precision measurements. The coupling between spins and particle rotation can be utilized to study quantum geometric phase, create gyroscopes and rotational matter-wave interferometers. However, previous efforts in levitated diamonds struggled with vacuum level or spin state readouts. To address these gaps, we fabricate an integrated surface ion trap with multiple stabilization electrodes. This facilitates on-chip levitation and, for the first time, optically detected magnetic resonance measurements of a nanodiamond levitated in high vacuum. The internal temperature of our levitated nanodiamond remains moderate below $10^{-5}$ Torr. Impressively, we have driven a nanodiamond to rotate up to 20 MHz ($1.2 \times 10^{9}$ rpm), surpassing typical nitrogen-vacancy (NV) center electron spin dephasing rates. Using these NV spins, we observe the effect of the Berry phase arising from particle rotation. In addition, we demonstrate quantum control of spins in a rotating nanodiamond. These results mark an important development in interfacing mechanical rotation with spin qubits, expanding our capacity to study quantum phenomena.
Related papers
- Gyroscopic stability for nanoparticles in Stern-Gerlach Interferometry and spin contrast [2.569338891678463]
We investigate the role of rotation in a matter-wave interferometer, where we show that imparting angular momentum along the direction of a defect can cause an enhancement in spin contrast.
The imparted angular momentum can enhance the spatial superposition by almost a factor of two and possibly average out any potential permanent dipoles in the nanodiamond.
arXiv Detail & Related papers (2024-07-22T17:24:27Z) - Spin Read-out of the Motion of Levitated Electrically Rotated Diamonds [0.0]
We demonstrate electrically driven rotation of micro-particles levitating in Paul traps.
Spin states of nitrogen-vacancy centers in diamonds undergoing full rotation were successfully controlled.
These achievements mark progress toward interfacing full rotation with internal magnetic degrees of freedom in micron-scale objects.
arXiv Detail & Related papers (2023-09-04T11:56:15Z) - Spin-orbit torque on nuclear spins exerted by a spin accumulation via
hyperfine interactions [49.1574468325115]
This article demonstrates that the hyperfine coupling, which consists of Fermi contact and dipolar interactions, can mediate the application of spin-orbit torques acting on nuclear spins.
The reactions to the equilibrium and nonequilibrium components of the spin density is a torque on the nucleus with field-like and damping-like components.
This nuclear spin-orbit torque is a step toward stabilizing and controlling nuclear magnetic momenta, in magnitude and direction, and realizing nuclear spintronics.
arXiv Detail & Related papers (2023-05-21T08:05:23Z) - Near-field GHz rotation and sensing with an optically levitated
nanodumbbell [2.3797170434560484]
We optically levitate a silica nanodumbbell in a vacuum at about 430 nm away from a sapphire surface and drive it to rotate at GHz frequencies.
The relative linear speed between the tip of the nanodumbbell and the surface reaches 1.4 km/s at a sub-micrometer separation.
Our numerical simulation shows it is promising to detect the Casimir torque between a nanodumbbell and a nanograting.
arXiv Detail & Related papers (2023-01-25T23:30:21Z) - Quantum control of nuclear spin qubits in a rapidly rotating diamond [62.997667081978825]
Nuclear spins in certain solids couple weakly to their environment, making them attractive candidates for quantum information processing and inertial sensing.
We demonstrate optical nuclear spin polarization and rapid quantum control of nuclear spins in a diamond physically rotating at $1,$kHz, faster than the nuclear spin coherence time.
Our work liberates a previously inaccessible degree of freedom of the NV nuclear spin, unlocking new approaches to quantum control and rotation sensing.
arXiv Detail & Related papers (2021-07-27T03:39:36Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - Experimental Constraint on an Exotic Parity-Odd Spin- and
Velocity-Dependent Interaction with a Single Electron Spin Quantum Sensor [6.887744934296352]
Experiment set improved constraints on the exotic spin- and velocity-dependent interaction within the force range from 1 to 330 $mu$m.
The upper limit of the coupling $g_Aeg_VN $ at $200 mu m$ is $| g_Ae g_VN| leq 8.0times10-19$, significantly improving the current laboratory limit by more than four orders of magnitude.
arXiv Detail & Related papers (2020-09-19T15:31:21Z) - Gravity Probe Spin: Prospects for measuring general-relativistic
precession of intrinsic spin using a ferromagnetic gyroscope [51.51258642763384]
An experimental test at the intersection of quantum physics and general relativity is proposed.
The behavior of intrinsic spin in spacetime is an experimentally open question.
A measurement is possible by using mm-scale ferromagnetic gyroscopes in orbit around the Earth.
arXiv Detail & Related papers (2020-06-16T17:18:44Z) - 5D cooling and nonlinear dynamics of an optically levitated nanodumbbell [2.28145433491942]
We cool the 3 center-of-mass motion modes and 2 torsional vibration modes of a levitated nanodumbbell in a linearly-polarized laser simultaneously.
The only uncooled rigid-body degree of freedom is the rotation of the nanodumbbell around its long axis.
This work deepens our understanding of the nonlinear dynamics and rotation coupling of a levitated nanoparticles.
arXiv Detail & Related papers (2020-04-06T02:49:14Z) - Spin current generation and control in carbon nanotubes by combining
rotation and magnetic field [78.72753218464803]
We study the quantum dynamics of ballistic electrons in rotating carbon nanotubes in the presence of a uniform magnetic field.
By suitably combining the applied magnetic field intensity and rotation speed, one can tune one of the currents to zero while keeping the other one finite, giving rise to a spin current generator.
arXiv Detail & Related papers (2020-01-20T08:54:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.