Spin-orbit torque on nuclear spins exerted by a spin accumulation via
hyperfine interactions
- URL: http://arxiv.org/abs/2305.12390v2
- Date: Wed, 6 Sep 2023 01:49:49 GMT
- Title: Spin-orbit torque on nuclear spins exerted by a spin accumulation via
hyperfine interactions
- Authors: Adam B. Cahaya, Alejandro O. Leon and Mohammad H. Fauzi
- Abstract summary: This article demonstrates that the hyperfine coupling, which consists of Fermi contact and dipolar interactions, can mediate the application of spin-orbit torques acting on nuclear spins.
The reactions to the equilibrium and nonequilibrium components of the spin density is a torque on the nucleus with field-like and damping-like components.
This nuclear spin-orbit torque is a step toward stabilizing and controlling nuclear magnetic momenta, in magnitude and direction, and realizing nuclear spintronics.
- Score: 49.1574468325115
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spin-transfer and spin-orbit torques allow controlling magnetic degrees of
freedom in various materials and devices. However, while the transfer of
angular momenta between electrons has been widely studied, the contribution of
nuclear spins has yet to be explored further. This article demonstrates that
the hyperfine coupling, which consists of Fermi contact and dipolar
interactions, can mediate the application of spin-orbit torques acting on
nuclear spins. Our starting point is a sizable nuclear spin in a metal with
electronic spin accumulation. Then, via the hyperfine interactions, the nuclear
spin modifies the an electronic spin density. The reactions to the equilibrium
and nonequilibrium components of the spin density is a torque on the nucleus
with field-like and damping-like components, respectively. This nuclear
spin-orbit torque is a step toward stabilizing and controlling nuclear magnetic
momenta, in magnitude and direction, and realizing nuclear spintronics.
Related papers
- Tunable Gyromagnetic Augmentation of Nuclear Spins in Diamond [0.0]
This work identifies regimes in which we are able to implement fast quantum control of dark nuclear spins.
It lays the foundations for further inquiry into rapid control of long-lived spin qubits at room temperature.
arXiv Detail & Related papers (2021-09-28T06:14:51Z) - Quantum control of nuclear spin qubits in a rapidly rotating diamond [62.997667081978825]
Nuclear spins in certain solids couple weakly to their environment, making them attractive candidates for quantum information processing and inertial sensing.
We demonstrate optical nuclear spin polarization and rapid quantum control of nuclear spins in a diamond physically rotating at $1,$kHz, faster than the nuclear spin coherence time.
Our work liberates a previously inaccessible degree of freedom of the NV nuclear spin, unlocking new approaches to quantum control and rotation sensing.
arXiv Detail & Related papers (2021-07-27T03:39:36Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Driven dynamics of a quantum dot electron spin coupled to bath of
higher-spin nuclei [0.0]
We study the interplay of optical driving and hyperfine interaction between an electron confined in a quantum dot and its surrounding nuclear spin environment.
We find that while hyperfine interactions drive dynamic nuclear polarization and mode-locking, quadrupolar couplings counteract these effects.
arXiv Detail & Related papers (2020-12-14T03:00:18Z) - Nuclear spin readout in a cavity-coupled hybrid quantum dot-donor system [0.0]
Nuclear spins show long coherence times and are well isolated from the environment.
We present a method for nuclear spin readout by probing the transmission of a microwave resonator.
arXiv Detail & Related papers (2020-12-02T16:51:50Z) - Electrically tuned hyperfine spectrum in neutral
Tb(II)(Cp$^{\rm{iPr5}}$)$_2$ single-molecule magnet [64.10537606150362]
Both molecular electronic and nuclear spin levels can be used as qubits.
In solid state systems with dopants, an electric field was shown to effectively change the spacing between the nuclear spin qubit levels.
This hyperfine Stark effect may be useful for applications of molecular nuclear spins for quantum computing.
arXiv Detail & Related papers (2020-07-31T01:48:57Z) - Strong spin-orbit interaction and $g$-factor renormalization of hole
spins in Ge/Si nanowire quantum dots [0.0]
Hole spins in Ge/Si core/shell nanowires experience a spin-orbit interaction that has been predicted to be both strong and electrically tunable.
We experimentally determine the strength of spin-orbit interaction of hole spins confined to a double quantum dot in a Ge/Si nanowire.
arXiv Detail & Related papers (2020-07-08T17:54:49Z) - Spin current generation and control in carbon nanotubes by combining
rotation and magnetic field [78.72753218464803]
We study the quantum dynamics of ballistic electrons in rotating carbon nanotubes in the presence of a uniform magnetic field.
By suitably combining the applied magnetic field intensity and rotation speed, one can tune one of the currents to zero while keeping the other one finite, giving rise to a spin current generator.
arXiv Detail & Related papers (2020-01-20T08:54:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.