Exploring Geometric Deep Learning For Precipitation Nowcasting
- URL: http://arxiv.org/abs/2309.05828v1
- Date: Mon, 11 Sep 2023 21:14:55 GMT
- Title: Exploring Geometric Deep Learning For Precipitation Nowcasting
- Authors: Shan Zhao, Sudipan Saha, Zhitong Xiong, Niklas Boers, Xiao Xiang Zhu
- Abstract summary: We propose a geometric deep learning-based temporal Graph Convolutional Network (GCN) for precipitation nowcasting.
The adjacency matrix that simulates the interactions among grid cells is learned automatically by minimizing the L1 loss between prediction and ground truth pixel value.
We test the model on sequences of radar reflectivity maps over the Trento/Italy area.
- Score: 28.44612565923532
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Precipitation nowcasting (up to a few hours) remains a challenge due to the
highly complex local interactions that need to be captured accurately.
Convolutional Neural Networks rely on convolutional kernels convolving with
grid data and the extracted features are trapped by limited receptive field,
typically expressed in excessively smooth output compared to ground truth. Thus
they lack the capacity to model complex spatial relationships among the grids.
Geometric deep learning aims to generalize neural network models to
non-Euclidean domains. Such models are more flexible in defining nodes and
edges and can effectively capture dynamic spatial relationship among
geographical grids. Motivated by this, we explore a geometric deep
learning-based temporal Graph Convolutional Network (GCN) for precipitation
nowcasting. The adjacency matrix that simulates the interactions among grid
cells is learned automatically by minimizing the L1 loss between prediction and
ground truth pixel value during the training procedure. Then, the spatial
relationship is refined by GCN layers while the temporal information is
extracted by 1D convolution with various kernel lengths. The neighboring
information is fed as auxiliary input layers to improve the final result. We
test the model on sequences of radar reflectivity maps over the Trento/Italy
area. The results show that GCNs improves the effectiveness of modeling the
local details of the cloud profile as well as the prediction accuracy by
achieving decreased error measures.
Related papers
- Point Cloud Denoising With Fine-Granularity Dynamic Graph Convolutional Networks [58.050130177241186]
Noise perturbations often corrupt 3-D point clouds, hindering downstream tasks such as surface reconstruction, rendering, and further processing.
This paper introduces finegranularity dynamic graph convolutional networks called GDGCN, a novel approach to denoising in 3-D point clouds.
arXiv Detail & Related papers (2024-11-21T14:19:32Z) - Deep Learning as Ricci Flow [38.27936710747996]
Deep neural networks (DNNs) are powerful tools for approximating the distribution of complex data.
We show that the transformations performed by DNNs during classification tasks have parallels to those expected under Hamilton's Ricci flow.
Our findings motivate the use of tools from differential and discrete geometry to the problem of explainability in deep learning.
arXiv Detail & Related papers (2024-04-22T15:12:47Z) - Dynamic Graph Neural Network with Adaptive Edge Attributes for Air
Quality Predictions [12.336689498639366]
We propose a novel Dynamic Graph Neural Network with Adaptive Edge Attributes (DGN-AEA) on the message passing network.
Unlike prior information to establish edges, our method can obtain adaptive edge information through end-to-end training without any prior information.
arXiv Detail & Related papers (2023-02-20T13:45:55Z) - STGIN: A Spatial Temporal Graph-Informer Network for Long Sequence
Traffic Speed Forecasting [8.596556653895028]
This study proposes a new spatial-temporal neural network architecture to handle the long-term traffic parameters forecasting issue.
The attention mechanism potentially guarantees long-term prediction performance without significant information loss from distant inputs.
arXiv Detail & Related papers (2022-10-01T05:58:22Z) - Scalable Spatiotemporal Graph Neural Networks [14.415967477487692]
Graph neural networks (GNNs) are often the core component of the forecasting architecture.
In most pretemporal GNNs, the computational complexity scales up to a quadratic factor with the length of the sequence times the number of links in the graph.
We propose a scalable architecture that exploits an efficient encoding of both temporal and spatial dynamics.
arXiv Detail & Related papers (2022-09-14T09:47:38Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
We theoretically characterize the impact of connectivity patterns on the convergence of deep neural networks (DNNs) under gradient descent training.
We show that by a simple filtration on "unpromising" connectivity patterns, we can trim down the number of models to evaluate.
arXiv Detail & Related papers (2022-05-11T17:43:54Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
We present PredRNN, a new recurrent network for learning visual dynamics from historical context.
We show that our approach obtains highly competitive results on three standard datasets.
arXiv Detail & Related papers (2021-03-17T08:28:30Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
We design a simple and highly modularized graph convolutional network architecture for skeleton-based action recognition.
Our network is constructed by repeating a building block that aggregates multi-granularity information from both the spatial and temporal paths.
arXiv Detail & Related papers (2020-11-26T14:43:04Z) - A Point-Cloud Deep Learning Framework for Prediction of Fluid Flow
Fields on Irregular Geometries [62.28265459308354]
Network learns end-to-end mapping between spatial positions and CFD quantities.
Incompress laminar steady flow past a cylinder with various shapes for its cross section is considered.
Network predicts the flow fields hundreds of times faster than our conventional CFD.
arXiv Detail & Related papers (2020-10-15T12:15:02Z) - Examining COVID-19 Forecasting using Spatio-Temporal Graph Neural
Networks [8.949096210063662]
In this work, we examine a novel forecasting approach for COVID-19 case prediction that uses Graph Neural Networks and mobility data.
We evaluate this approach on the US county level COVID-19 dataset, and demonstrate that the rich spatial and temporal information leveraged by the graph neural network allows the model to learn complex dynamics.
arXiv Detail & Related papers (2020-07-06T23:11:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.