Examining COVID-19 Forecasting using Spatio-Temporal Graph Neural
Networks
- URL: http://arxiv.org/abs/2007.03113v1
- Date: Mon, 6 Jul 2020 23:11:38 GMT
- Title: Examining COVID-19 Forecasting using Spatio-Temporal Graph Neural
Networks
- Authors: Amol Kapoor, Xue Ben, Luyang Liu, Bryan Perozzi, Matt Barnes, Martin
Blais, Shawn O'Banion
- Abstract summary: In this work, we examine a novel forecasting approach for COVID-19 case prediction that uses Graph Neural Networks and mobility data.
We evaluate this approach on the US county level COVID-19 dataset, and demonstrate that the rich spatial and temporal information leveraged by the graph neural network allows the model to learn complex dynamics.
- Score: 8.949096210063662
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we examine a novel forecasting approach for COVID-19 case
prediction that uses Graph Neural Networks and mobility data. In contrast to
existing time series forecasting models, the proposed approach learns from a
single large-scale spatio-temporal graph, where nodes represent the
region-level human mobility, spatial edges represent the human mobility based
inter-region connectivity, and temporal edges represent node features through
time. We evaluate this approach on the US county level COVID-19 dataset, and
demonstrate that the rich spatial and temporal information leveraged by the
graph neural network allows the model to learn complex dynamics. We show a 6%
reduction of RMSLE and an absolute Pearson Correlation improvement from 0.9978
to 0.998 compared to the best performing baseline models. This novel source of
information combined with graph based deep learning approaches can be a
powerful tool to understand the spread and evolution of COVID-19. We encourage
others to further develop a novel modeling paradigm for infectious disease
based on GNNs and high resolution mobility data.
Related papers
- A Generative Self-Supervised Framework using Functional Connectivity in
fMRI Data [15.211387244155725]
Deep neural networks trained on Functional Connectivity (FC) networks extracted from functional Magnetic Resonance Imaging (fMRI) data have gained popularity.
Recent research on the application of Graph Neural Network (GNN) to FC suggests that exploiting the time-varying properties of the FC could significantly improve the accuracy and interpretability of the model prediction.
High cost of acquiring high-quality fMRI data and corresponding labels poses a hurdle to their application in real-world settings.
We propose a generative SSL approach that is tailored to effectively harnesstemporal information within dynamic FC.
arXiv Detail & Related papers (2023-12-04T16:14:43Z) - Exploring Geometric Deep Learning For Precipitation Nowcasting [28.44612565923532]
We propose a geometric deep learning-based temporal Graph Convolutional Network (GCN) for precipitation nowcasting.
The adjacency matrix that simulates the interactions among grid cells is learned automatically by minimizing the L1 loss between prediction and ground truth pixel value.
We test the model on sequences of radar reflectivity maps over the Trento/Italy area.
arXiv Detail & Related papers (2023-09-11T21:14:55Z) - Spatial-Temporal Graph Learning with Adversarial Contrastive Adaptation [19.419836274690816]
We propose a new spatial-temporal graph learning model (GraphST) for enabling effective self-supervised learning.
Our proposed model is an adversarial contrastive learning paradigm that automates the distillation of crucial multi-view self-supervised information.
We demonstrate the superiority of our proposed GraphST method in various spatial-temporal prediction tasks on real-life datasets.
arXiv Detail & Related papers (2023-06-19T03:09:35Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
We propose a novel Dynamic Diffusion-al Graph Neural Network (DVGNN) fortemporal forecasting.
The proposed DVGNN model outperforms state-of-the-art approaches and achieves outstanding Root Mean Squared Error result.
arXiv Detail & Related papers (2023-05-16T11:38:19Z) - Predicting COVID-19 pandemic by spatio-temporal graph neural networks: A
New Zealand's study [16.3773496061049]
We propose a novel deep learning architecture named Attention-based Multiresolution Graph Neural Networks (ATMGNN)
Our method can capture the multiscale structures of the spatial graph via a learning to cluster algorithm in a data-driven manner.
For a future work, we plan to extend our work for real-time prediction and global scale.
arXiv Detail & Related papers (2023-05-12T19:00:17Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
We propose a novel graph contrastive learning method, termed Interpolation-based Correlation Reduction Network (ICRN)
In our method, we improve the discriminative capability of the latent feature by enlarging the margin of decision boundaries.
By combining the two settings, we extract rich supervision information from both the abundant unlabeled nodes and the rare yet valuable labeled nodes for discnative representation learning.
arXiv Detail & Related papers (2022-06-06T14:26:34Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
Recent have shifted their focus towards formulating traffic forecasting as atemporal graph modeling problem.
We propose a novel approach for accurate traffic forecasting on road networks over multiple future time steps.
arXiv Detail & Related papers (2021-11-25T08:45:14Z) - On the spatial attention in Spatio-Temporal Graph Convolutional Networks
for skeleton-based human action recognition [97.14064057840089]
Graphal networks (GCNs) promising performance in skeleton-based human action recognition by modeling a sequence of skeletons as a graph.
Most of the recently proposed G-temporal-based methods improve the performance by learning the graph structure at each layer of the network.
arXiv Detail & Related papers (2020-11-07T19:03:04Z) - A Spatial-Temporal Graph Based Hybrid Infectious Disease Model with
Application to COVID-19 [3.785123406103385]
As the COVID-19 pandemic evolves, reliable prediction plays an important role for policy making.
The data-driven machine learning models such as RNN can suffer in case of limited time series data such as COVID-19.
We combine SEIR and RNN on a graph structure to develop a hybrid-temporal model to achieve both accuracy and efficiency in training and forecasting.
arXiv Detail & Related papers (2020-10-18T19:34:54Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
Graph convolutions perform neighborhood aggregation and represent one of the most important graph operations.
Several recent studies attribute this performance deterioration to the over-smoothing issue.
We propose Deep Adaptive Graph Neural Network (DAGNN) to adaptively incorporate information from large receptive fields.
arXiv Detail & Related papers (2020-07-18T01:11:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.