論文の概要: Language Models as Black-Box Optimizers for Vision-Language Models
- arxiv url: http://arxiv.org/abs/2309.05950v5
- Date: Tue, 14 May 2024 03:20:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-15 19:50:31.142348
- Title: Language Models as Black-Box Optimizers for Vision-Language Models
- Title(参考訳): 視覚言語モデルのためのブラックボックス最適化器としての言語モデル
- Authors: Shihong Liu, Zhiqiu Lin, Samuel Yu, Ryan Lee, Tiffany Ling, Deepak Pathak, Deva Ramanan,
- Abstract要約: Webスケールデータセットで事前トレーニングされた視覚言語モデル(VLM)は、最小限のデータで微調整された場合、下流タスクに顕著な機能を示す。
我々は,自然言語のプロンプトを通じてVLMを最適化するためのブラックボックスアプローチを開発することを目指している。
- 参考スコア(独自算出の注目度): 62.80817942316398
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vision-language models (VLMs) pre-trained on web-scale datasets have demonstrated remarkable capabilities on downstream tasks when fine-tuned with minimal data. However, many VLMs rely on proprietary data and are not open-source, which restricts the use of white-box approaches for fine-tuning. As such, we aim to develop a black-box approach to optimize VLMs through natural language prompts, thereby avoiding the need to access model parameters, feature embeddings, or even output logits. We propose employing chat-based LLMs to search for the best text prompt for VLMs. Specifically, we adopt an automatic hill-climbing procedure that converges to an effective prompt by evaluating the performance of current prompts and asking LLMs to refine them based on textual feedback, all within a conversational process without human-in-the-loop. In a challenging 1-shot image classification setup, our simple approach surpasses the white-box continuous prompting method (CoOp) by an average of 1.5% across 11 datasets including ImageNet. Our approach also outperforms both human-engineered and LLM-generated prompts. We highlight the advantage of conversational feedback that incorporates both positive and negative prompts, suggesting that LLMs can utilize the implicit gradient direction in textual feedback for a more efficient search. In addition, we find that the text prompts generated through our strategy are not only more interpretable but also transfer well across different VLM architectures in a black-box manner. Lastly, we apply our framework to optimize the state-of-the-art black-box VLM (DALL-E 3) for text-to-image generation, prompt inversion, and personalization.
- Abstract(参考訳): Webスケールデータセットで事前トレーニングされた視覚言語モデル(VLM)は、最小限のデータで微調整された場合、下流タスクに顕著な機能を示す。
しかしながら、多くのVLMはプロプライエタリなデータに依存しており、オープンソースではない。
そこで我々は,自然言語のプロンプトを通じてVLMを最適化するブラックボックスアプローチを開発し,モデルパラメータや機能埋め込み,さらには出力ロジットへのアクセスを回避することを目的とする。
本稿では,VLM に最適なテキストプロンプトを探すために,チャットベースの LLM を提案する。
具体的には,現在のプロンプトの性能を評価し,LLMにテキストフィードバックに基づいてそれらを洗練するよう求めることで,効果的なプロンプトに収束する自動ヒルクライミング手法を採用する。
難易度の高い1ショット画像分類設定では、ImageNetを含む11データセットの平均1.5%のホワイトボックス連続プロンプト法(CoOp)を克服する。
また,本手法は,人間工学的プロンプトとLLM的プロンプトの両方に優れる。
我々は,肯定と否定の両方のプロンプトを組み込んだ会話フィードバックの利点を強調し,LLMがテキストフィードバックにおける暗黙の勾配方向をより効率的な検索に活用できることを示唆した。
さらに、我々の戦略によって生成されたテキストプロンプトは、より解釈可能であるだけでなく、ブラックボックス方式で異なるVLMアーキテクチャ間でうまく転送可能であることを発見した。
最後に,現状のブラックボックスVLM(DALL-E3)をテキスト・ツー・イメージ生成,インバージョン,パーソナライズに最適化するために,我々のフレームワークを適用した。
関連論文リスト
- Rethinking Visual Prompting for Multimodal Large Language Models with External Knowledge [76.45868419402265]
マルチモーダルな大言語モデル(MLLM)は、膨大な高品質の画像テキストデータセットをトレーニングすることで、大きな進歩を遂げている。
しかし、マスクのような細粒度や空間的に密集した情報をテキストで明示的に伝達することの難しさは、MLLMにとって困難である。
本稿では、特殊な視覚モデルから派生した細粒度の外部知識をMLLMに統合する新しい視覚的プロンプト手法を提案する。
論文 参考訳(メタデータ) (2024-07-05T17:43:30Z) - Learning to Prompt with Text Only Supervision for Vision-Language Models [107.282881515667]
メソッドの1つのブランチは、視覚情報を使用してプロンプトを学習することでCLIPに適応する。
別のアプローチでは、大規模な言語モデルからクラス記述を生成することで、トレーニング不要の手法を利用する。
そこで本研究では,テキストデータのみを用いてプロンプトを学習することで,両ストリームの強みを組み合わせることを提案する。
論文 参考訳(メタデータ) (2024-01-04T18:59:49Z) - CLAMP: Contrastive LAnguage Model Prompt-tuning [89.96914454453791]
このように適応すれば,大規模な言語モデルでも優れた画像分類性能が得られることを示す。
我々のアプローチは最先端のmLLMを13%上回り、カスタムテキストモデルによる対照的な学習をわずかに上回ります。
論文 参考訳(メタデータ) (2023-12-04T05:13:59Z) - InfMLLM: A Unified Framework for Visual-Language Tasks [44.29407348046122]
マルチモーダルな大言語モデル (MLLM) が注目されている。
この作業は、LLMがより視覚的な言語に関連したタスクに取り組むことを可能にすることを目的としている。
InfMLLMは、最先端(SOTA)パフォーマンスまたは最近のMLLMに匹敵するパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-11-12T09:58:16Z) - Context-Aware Prompt Tuning for Vision-Language Model with
Dual-Alignment [15.180715595425864]
我々は、事前学習された大言語モデル(LLM)を組み込むことで、視覚言語モデルの迅速な学習を改善する新しい手法を提案する。
DuAl-PTでは、明示的および暗黙的両方のコンテキストモデリングの恩恵を受けながら、よりコンテキスト対応のプロンプトを学習することを提案する。
実証的には、DuAl-PTは、数ショットの認識とベース・ツー・ニューな一般化で、11のダウンストリームデータセット上で優れたパフォーマンスを実現している。
論文 参考訳(メタデータ) (2023-09-08T06:51:15Z) - TouchStone: Evaluating Vision-Language Models by Language Models [91.69776377214814]
本稿では,LVLMの様々な能力を総合的に評価するために,強大な言語モデルを用いた評価手法を提案する。
オープンワールドイメージと質問からなる包括的ビジュアル対話データセットTouchStoneを構築し,5つの主要な機能カテゴリと27のサブタスクをカバーした。
GPT-4のような強力なLVLMは、テキスト機能のみを活用することで、対話品質を効果的に評価できることを実証する。
論文 参考訳(メタデータ) (2023-08-31T17:52:04Z) - Towards Versatile and Efficient Visual Knowledge Integration into
Pre-trained Language Models with Cross-Modal Adapters [16.44174900423759]
我々は,事前学習された視覚言語モデルで学習した視覚的およびテキスト的知識を活用するために,新しいプラグイン・アンド・プレイ・モジュールであるX-adapterを提案する。
提案手法は,オブジェクト指向推論および自然言語理解タスクの性能を大幅に向上させることができる。
論文 参考訳(メタデータ) (2023-05-12T10:08:46Z) - Guiding Large Language Models via Directional Stimulus Prompting [114.84930073977672]
我々は,特定の所望の出力に対して,ブラックボックス大言語モデル(LLM)を導くための新しいフレームワークであるDirectional Stimulus Promptingを紹介する。
LLMを直接調整するのではなく、小さな調整可能なポリシーモデルを用いて各入力インスタンスに対して補助的な指向性刺激プロンプトを生成する。
論文 参考訳(メタデータ) (2023-02-22T17:44:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。