Generalized Implicit Neural Representation for Efficient MRI Parallel Imaging Reconstruction
- URL: http://arxiv.org/abs/2309.06067v7
- Date: Fri, 22 Nov 2024 09:56:52 GMT
- Title: Generalized Implicit Neural Representation for Efficient MRI Parallel Imaging Reconstruction
- Authors: Hao Li, Yusheng Zhou, Jianan Liu, Xiling Liu, Tao Huang, Zhihan Lyu, Weidong Cai, Wei Chen,
- Abstract summary: This study presents a generalized implicit neural representation (INR)-based framework for MRI PI reconstruction.
The framework's INR model treats fully sampled MR images as a continuous function of spatial coordinates and prior voxel-specific features.
Experiments on publicly available MRI datasets demonstrate the superior performance of the proposed method in reconstructing images at multiple acceleration factors.
- Score: 16.63720411275398
- License:
- Abstract: High-resolution magnetic resonance imaging (MRI) is essential in clinical diagnosis. However, its long acquisition time remains a critical issue. Parallel imaging (PI) is a common approach to reduce acquisition time by periodically skipping specific k-space lines and reconstructing images from undersampled data. This study presents a generalized implicit neural representation (INR)-based framework for MRI PI reconstruction, addressing limitations commonly encountered in conventional methods, such as subject-specific or undersampling scale-specific requirements and long reconstruction time. The proposed method overcomes these limitations by leveraging prior knowledge of voxel-specific features and integrating a novel scale-embedded encoder module. This encoder generates scale-independent voxel-specific features from undersampled images, enabling robust reconstruction across various undersampling scales without requiring retraining for each specific scale or subject. The framework's INR model treats fully sampled MR images as a continuous function of spatial coordinates and prior voxel-specific features, efficiently reconstructing high-quality MR images from undersampled data. Extensive experiments on publicly available MRI datasets demonstrate the superior performance of the proposed method in reconstructing images at multiple acceleration factors (4x, 5x, and 6x), achieving higher evaluation metrics and visual fidelity compared to state-of-the-art methods. In terms of efficiency, this INR-based approach exhibits notable advantages, including reduced floating point operations and GPU usage, allowing for accelerated processing times while maintaining high reconstruction quality. The generalized design of the model significantly reduces computational resources and time consumption, making it more suitable for real-time clinical applications.
Related papers
- Continuous K-space Recovery Network with Image Guidance for Fast MRI Reconstruction [5.910509015352437]
Fast MRI reconstruction aims to restore high-quality images from the undersampled k-space.
Existing methods typically train deep learning models to map the undersampled data to artifact-free MRI images.
We propose a continuous k-space recovery network from a new perspective of implicit neural representation with image domain guidance.
arXiv Detail & Related papers (2024-11-18T04:54:04Z) - On the Foundation Model for Cardiac MRI Reconstruction [6.284878525302227]
We propose a foundation model that uses adaptive unrolling, channel-shifting, and Pattern and Contrast-Prompt-UNet to tackle the problem.
The PCP-UNet is equipped with an image contrast and sampling pattern prompt.
arXiv Detail & Related papers (2024-11-15T18:15:56Z) - A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
Deep neural networks have shown great potential for reconstructing high-fidelity images from undersampled measurements.
Our model is based on neural operators, a discretization-agnostic architecture.
Our inference speed is also 1,400x faster than diffusion methods.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - TC-KANRecon: High-Quality and Accelerated MRI Reconstruction via Adaptive KAN Mechanisms and Intelligent Feature Scaling [7.281993256973667]
This study presents an innovative conditional guided diffusion model, named as TC-KANRecon.
It incorporates the Multi-Free U-KAN (MF-UKAN) module and a dynamic clipping strategy.
Experimental results demonstrate that the proposed method outperforms other MRI reconstruction methods in both qualitative and quantitative evaluations.
arXiv Detail & Related papers (2024-08-11T06:31:56Z) - Joint Edge Optimization Deep Unfolding Network for Accelerated MRI Reconstruction [3.9681863841849623]
We build a joint edge optimization model that not only incorporates individual regularizers specific to both the MR image and the edges, but also enforces a co-regularizer to effectively establish a stronger correlation between them.
Specifically, the edge information is defined through a non-edge probability map to guide the image reconstruction during the optimization process.
Meanwhile, the regularizers pertaining to images and edges are incorporated into a deep unfolding network to automatically learn their respective inherent a-priori information.
arXiv Detail & Related papers (2024-05-09T05:51:33Z) - CMRxRecon: An open cardiac MRI dataset for the competition of
accelerated image reconstruction [62.61209705638161]
There has been growing interest in deep learning-based CMR imaging algorithms.
Deep learning methods require large training datasets.
This dataset includes multi-contrast, multi-view, multi-slice and multi-coil CMR imaging data from 300 subjects.
arXiv Detail & Related papers (2023-09-19T15:14:42Z) - K-Space-Aware Cross-Modality Score for Synthesized Neuroimage Quality
Assessment [71.27193056354741]
The problem of how to assess cross-modality medical image synthesis has been largely unexplored.
We propose a new metric K-CROSS to spur progress on this challenging problem.
K-CROSS uses a pre-trained multi-modality segmentation network to predict the lesion location.
arXiv Detail & Related papers (2023-07-10T01:26:48Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Multi-modal Aggregation Network for Fast MR Imaging [85.25000133194762]
We propose a novel Multi-modal Aggregation Network, named MANet, which is capable of discovering complementary representations from a fully sampled auxiliary modality.
In our MANet, the representations from the fully sampled auxiliary and undersampled target modalities are learned independently through a specific network.
Our MANet follows a hybrid domain learning framework, which allows it to simultaneously recover the frequency signal in the $k$-space domain.
arXiv Detail & Related papers (2021-10-15T13:16:59Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z) - Deep Residual Dense U-Net for Resolution Enhancement in Accelerated MRI
Acquisition [19.422926534305837]
We propose a deep-learning approach, aiming at reconstructing high-quality images from accelerated MRI acquisition.
Specifically, we use Convolutional Neural Network (CNN) to learn the differences between the aliased images and the original images.
Considering the peculiarity of the down-sampled k-space data, we introduce a new term to the loss function in learning, which effectively employs the given k-space data.
arXiv Detail & Related papers (2020-01-13T19:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.