SGNet: Salient Geometric Network for Point Cloud Registration
- URL: http://arxiv.org/abs/2309.06207v5
- Date: Wed, 28 Aug 2024 03:39:10 GMT
- Title: SGNet: Salient Geometric Network for Point Cloud Registration
- Authors: Qianliang Wu, Yaqing Ding, Lei Luo, Haobo Jiang, Shuo Gu, Chuanwei Zhou, Jin Xie, Jian Yang,
- Abstract summary: Point Cloud Registration (PCR) is a critical and challenging task in computer vision.
Previous methods have encountered challenges with ambiguous matching due to similarity among patch blocks.
We propose a new framework that includes several novel techniques.
- Score: 35.49985932039906
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Point Cloud Registration (PCR) is a critical and challenging task in computer vision. One of the primary difficulties in PCR is identifying salient and meaningful points that exhibit consistent semantic and geometric properties across different scans. Previous methods have encountered challenges with ambiguous matching due to the similarity among patch blocks throughout the entire point cloud and the lack of consideration for efficient global geometric consistency. To address these issues, we propose a new framework that includes several novel techniques. Firstly, we introduce a semantic-aware geometric encoder that combines object-level and patch-level semantic information. This encoder significantly improves registration recall by reducing ambiguity in patch-level superpoint matching. Additionally, we incorporate a prior knowledge approach that utilizes an intrinsic shape signature to identify salient points. This enables us to extract the most salient super points and meaningful dense points in the scene. Secondly, we introduce an innovative transformer that encodes High-Order (HO) geometric features. These features are crucial for identifying salient points within initial overlap regions while considering global high-order geometric consistency. To optimize this high-order transformer further, we introduce an anchor node selection strategy. By encoding inter-frame triangle or polyhedron consistency features based on these anchor nodes, we can effectively learn high-order geometric features of salient super points. These high-order features are then propagated to dense points and utilized by a Sinkhorn matching module to identify key correspondences for successful registration. In our experiments conducted on well-known datasets such as 3DMatch/3DLoMatch and KITTI, our approach has shown promising results, highlighting the effectiveness of our novel method.
Related papers
- A Recipe for Geometry-Aware 3D Mesh Transformers [2.0992612407358293]
We study an approach for embedding features at the patch level, accommodating patches with variable node counts.
Our research highlights critical insights: 1) the importance of structural and positional embeddings facilitated by heat diffusion in general 3D mesh transformers; 2) the effectiveness of novel components such as geodesic masking and feature interaction via cross-attention in enhancing learning; and 3) the superior performance and efficiency of our proposed methods in challenging segmentation and classification tasks.
arXiv Detail & Related papers (2024-10-31T19:13:31Z) - Fast Point Cloud Geometry Compression with Context-based Residual Coding and INR-based Refinement [19.575833741231953]
We use the KNN method to determine the neighborhoods of raw surface points.
A conditional probability model is adaptive to local geometry, leading to significant rate reduction.
We incorporate an implicit neural representation into the refinement layer, allowing the decoder to sample points on the underlying surface at arbitrary densities.
arXiv Detail & Related papers (2024-08-06T05:24:06Z) - Boosting Cross-Domain Point Classification via Distilling Relational Priors from 2D Transformers [59.0181939916084]
Traditional 3D networks mainly focus on local geometric details and ignore the topological structure between local geometries.
We propose a novel Priors Distillation (RPD) method to extract priors from the well-trained transformers on massive images.
Experiments on the PointDA-10 and the Sim-to-Real datasets verify that the proposed method consistently achieves the state-of-the-art performance of UDA for point cloud classification.
arXiv Detail & Related papers (2024-07-26T06:29:09Z) - Mesh Denoising Transformer [104.5404564075393]
Mesh denoising is aimed at removing noise from input meshes while preserving their feature structures.
SurfaceFormer is a pioneering Transformer-based mesh denoising framework.
New representation known as Local Surface Descriptor captures local geometric intricacies.
Denoising Transformer module receives the multimodal information and achieves efficient global feature aggregation.
arXiv Detail & Related papers (2024-05-10T15:27:43Z) - GeoTransformer: Fast and Robust Point Cloud Registration with Geometric
Transformer [63.85771838683657]
We study the problem of extracting accurate correspondences for point cloud registration.
Recent keypoint-free methods have shown great potential through bypassing the detection of repeatable keypoints.
We propose Geometric Transformer, or GeoTransformer for short, to learn geometric feature for robust superpoint matching.
arXiv Detail & Related papers (2023-07-25T02:36:04Z) - Improving RGB-D Point Cloud Registration by Learning Multi-scale Local
Linear Transformation [38.64501645574878]
Point cloud registration aims at estimating the geometric transformation between two point cloud scans.
Recent point cloud registration methods have tried to apply RGB-D data to achieve more accurate correspondence.
We propose a new Geometry-Aware Visual Feature Extractor (GAVE) that employs multi-scale local linear transformation.
arXiv Detail & Related papers (2022-08-31T14:36:09Z) - Geometric Transformer for Fast and Robust Point Cloud Registration [53.10568889775553]
We study the problem of extracting accurate correspondences for point cloud registration.
Recent keypoint-free methods bypass the detection of repeatable keypoints which is difficult in low-overlap scenarios.
We propose Geometric Transformer to learn geometric feature for robust superpoint matching.
arXiv Detail & Related papers (2022-02-14T13:26:09Z) - Neighborhood-aware Geometric Encoding Network for Point Cloud
Registration [0.0]
Neighborhood-aware Geometric.
Network (NgeNet) for accurate point cloud registration.
NgeNet is model-agnostic, which could be easily migrated to other networks.
arXiv Detail & Related papers (2022-01-28T13:04:54Z) - PCAM: Product of Cross-Attention Matrices for Rigid Registration of
Point Clouds [79.99653758293277]
PCAM is a neural network whose key element is a pointwise product of cross-attention matrices.
We show that PCAM achieves state-of-the-art results among methods which, like us, solve steps (a) and (b) jointly via deepnets.
arXiv Detail & Related papers (2021-10-04T09:23:27Z) - Self-supervised Geometric Perception [96.89966337518854]
Self-supervised geometric perception is a framework to learn a feature descriptor for correspondence matching without any ground-truth geometric model labels.
We show that SGP achieves state-of-the-art performance that is on-par or superior to the supervised oracles trained using ground-truth labels.
arXiv Detail & Related papers (2021-03-04T15:34:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.