Compiled Models, Built-In Exploits: Uncovering Pervasive Bit-Flip Attack Surfaces in DNN Executables
- URL: http://arxiv.org/abs/2309.06223v3
- Date: Mon, 21 Oct 2024 12:11:52 GMT
- Title: Compiled Models, Built-In Exploits: Uncovering Pervasive Bit-Flip Attack Surfaces in DNN Executables
- Authors: Yanzuo Chen, Zhibo Liu, Yuanyuan Yuan, Sihang Hu, Tianxiang Li, Shuai Wang,
- Abstract summary: Bit-flip attacks (BFAs) can manipulate deep neural networks (DNNs)
For high-level DNN models running on deep learning (DL) frameworks like PyTorch, extensive BFAs have been used to flip bits in model weights and shown effective.
- Score: 18.123649165203652
- License:
- Abstract: Bit-flip attacks (BFAs) can manipulate deep neural networks (DNNs). For high-level DNN models running on deep learning (DL) frameworks like PyTorch, extensive BFAs have been used to flip bits in model weights and shown effective. Defenses have also been proposed to guard model weights. However, DNNs are increasingly compiled into DNN executables by DL compilers to leverage hardware primitives. These executables manifest distinct computation paradigms; existing research fails to accurately capture and expose the BFA surfaces on DNN executables. To this end, we launch the first systematic study of BFAs on DNN executables. Prior BFAs are limited to attacking model weights and assume a strong whitebox attacker with full knowledge of victim model weights, which is unrealistic as weights are often confidential. In contrast, we find that BFAs on DNN executables can achieve high effectiveness by exploiting the model structure (usually stored in the executable code), which only requires knowing the (often public) model structure. Importantly, such structure-based BFAs are pervasive, transferable, and more severe in DNN executables. They also slip past existing defenses. To demonstrate the new attack surfaces, we assume a weak and more realistic attacker with no knowledge of victim model weights. We design an automated tool to identify vulnerable bits in victim executables with high confidence (70% vs. baseline 2%). We show on DDR4 DRAM that only 1.4 flips on average are needed to fully downgrade the accuracy of victim models, including quantized ones which could require 23x more flips previously, to random guesses. We comprehensively evaluate 16 DNN executables, covering large-scale models trained on commonly-used datasets compiled by the two most popular DL compilers. Our finding calls for incorporating security mechanisms in future DNN compilation toolchains.
Related papers
- Link Stealing Attacks Against Inductive Graph Neural Networks [60.931106032824275]
A graph neural network (GNN) is a type of neural network that is specifically designed to process graph-structured data.
Previous work has shown that transductive GNNs are vulnerable to a series of privacy attacks.
This paper conducts a comprehensive privacy analysis of inductive GNNs through the lens of link stealing attacks.
arXiv Detail & Related papers (2024-05-09T14:03:52Z) - ELEGANT: Certified Defense on the Fairness of Graph Neural Networks [94.10433608311604]
Graph Neural Networks (GNNs) have emerged as a prominent graph learning model in various graph-based tasks.
malicious attackers could easily corrupt the fairness level of their predictions by adding perturbations to the input graph data.
We propose a principled framework named ELEGANT to study a novel problem of certifiable defense on the fairness level of GNNs.
arXiv Detail & Related papers (2023-11-05T20:29:40Z) - One-bit Flip is All You Need: When Bit-flip Attack Meets Model Training [54.622474306336635]
A new weight modification attack called bit flip attack (BFA) was proposed, which exploits memory fault inject techniques.
We propose a training-assisted bit flip attack, in which the adversary is involved in the training stage to build a high-risk model to release.
arXiv Detail & Related papers (2023-08-12T09:34:43Z) - Isolation and Induction: Training Robust Deep Neural Networks against
Model Stealing Attacks [51.51023951695014]
Existing model stealing defenses add deceptive perturbations to the victim's posterior probabilities to mislead the attackers.
This paper proposes Isolation and Induction (InI), a novel and effective training framework for model stealing defenses.
In contrast to adding perturbations over model predictions that harm the benign accuracy, we train models to produce uninformative outputs against stealing queries.
arXiv Detail & Related papers (2023-08-02T05:54:01Z) - Quantization Aware Attack: Enhancing Transferable Adversarial Attacks by Model Quantization [57.87950229651958]
Quantized neural networks (QNNs) have received increasing attention in resource-constrained scenarios due to their exceptional generalizability.
Previous studies claim that transferability is difficult to achieve across QNNs with different bitwidths.
We propose textitquantization aware attack (QAA) which fine-tunes a QNN substitute model with a multiple-bitwidth training objective.
arXiv Detail & Related papers (2023-05-10T03:46:53Z) - EZClone: Improving DNN Model Extraction Attack via Shape Distillation
from GPU Execution Profiles [0.1529342790344802]
Deep Neural Networks (DNNs) have become ubiquitous due to their performance on prediction and classification problems.
They face a variety of threats as their usage spreads.
Model extraction attacks, which steal DNNs, endanger intellectual property, data privacy, and security.
We propose two techniques catering to various threat models.
arXiv Detail & Related papers (2023-04-06T21:40:09Z) - Robustness of Bayesian Neural Networks to White-Box Adversarial Attacks [55.531896312724555]
Bayesian Networks (BNNs) are robust and adept at handling adversarial attacks by incorporating randomness.
We create our BNN model, called BNN-DenseNet, by fusing Bayesian inference (i.e., variational Bayes) to the DenseNet architecture.
An adversarially-trained BNN outperforms its non-Bayesian, adversarially-trained counterpart in most experiments.
arXiv Detail & Related papers (2021-11-16T16:14:44Z) - DeepSteal: Advanced Model Extractions Leveraging Efficient Weight
Stealing in Memories [26.067920958354]
One of the major threats to the privacy of Deep Neural Networks (DNNs) is model extraction attacks.
Recent studies show hardware-based side channel attacks can reveal internal knowledge about DNN models (e.g., model architectures)
We propose an advanced model extraction attack framework DeepSteal that effectively steals DNN weights with the aid of memory side-channel attack.
arXiv Detail & Related papers (2021-11-08T16:55:45Z) - ZeBRA: Precisely Destroying Neural Networks with Zero-Data Based
Repeated Bit Flip Attack [10.31732879936362]
We present Zero-data Based Repeated bit flip Attack (ZeBRA) that precisely destroys deep neural networks (DNNs)
Our approach makes the adversarial weight attack more fatal to the security of DNNs.
arXiv Detail & Related papers (2021-11-01T16:44:20Z) - HufuNet: Embedding the Left Piece as Watermark and Keeping the Right
Piece for Ownership Verification in Deep Neural Networks [16.388046449021466]
We propose a novel solution for watermarking deep neural networks (DNNs)
HufuNet is highly robust against model fine-tuning/pruning, kernels cutoff/supplement, functionality-equivalent attack, and fraudulent ownership claims.
arXiv Detail & Related papers (2021-03-25T06:55:22Z) - DeepHammer: Depleting the Intelligence of Deep Neural Networks through
Targeted Chain of Bit Flips [29.34622626909906]
We demonstrate the first hardware-based attack on quantized deep neural networks (DNNs)
DeepHammer is able to successfully tamper DNN inference behavior at run-time within a few minutes.
Our work highlights the need to incorporate security mechanisms in future deep learning system.
arXiv Detail & Related papers (2020-03-30T18:51:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.