論文の概要: DF-TransFusion: Multimodal Deepfake Detection via Lip-Audio
Cross-Attention and Facial Self-Attention
- arxiv url: http://arxiv.org/abs/2309.06511v1
- Date: Tue, 12 Sep 2023 18:37:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-14 16:40:16.241638
- Title: DF-TransFusion: Multimodal Deepfake Detection via Lip-Audio
Cross-Attention and Facial Self-Attention
- Title(参考訳): df-transfusion: 口唇交叉と顔面自己接触によるマルチモーダルディープフェイク検出
- Authors: Aaditya Kharel, Manas Paranjape, Aniket Bera
- Abstract要約: 本稿では,ディープフェイク検出タスクのための音声とビデオの同時処理を目的とした,新しいマルチモーダルオーディオ・ビデオ・フレームワークを提案する。
本モデルでは,細調整VGG-16ネットワークを介して視覚的手がかりを抽出しながら,入力音声による唇の同期に重きを置いている。
- 参考スコア(独自算出の注目度): 13.671150394943684
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: With the rise in manipulated media, deepfake detection has become an
imperative task for preserving the authenticity of digital content. In this
paper, we present a novel multi-modal audio-video framework designed to
concurrently process audio and video inputs for deepfake detection tasks. Our
model capitalizes on lip synchronization with input audio through a
cross-attention mechanism while extracting visual cues via a fine-tuned VGG-16
network. Subsequently, a transformer encoder network is employed to perform
facial self-attention. We conduct multiple ablation studies highlighting
different strengths of our approach. Our multi-modal methodology outperforms
state-of-the-art multi-modal deepfake detection techniques in terms of F-1 and
per-video AUC scores.
- Abstract(参考訳): 操作メディアの増加に伴い、ディープフェイク検出はデジタルコンテンツの信頼性を維持するための必須課題となっている。
本稿では,ディープフェイク検出タスクにおいて,音声と映像を同時に処理するマルチモーダルオーディオビデオフレームワークを提案する。
本モデルでは,vgg-16ネットワークを用いて視覚手がかりを抽出しながら,クロスアテンション機構による入力音声とのリップ同期を活用している。
その後、変圧器エンコーダネットワークを用いて顔自己着脱を行う。
アプローチのさまざまな強みを強調する複数のアブレーション研究を行っている。
マルチモーダル手法は,f-1とビデオ単位のaucスコアで最先端のマルチモーダルディープフェイク検出技術を上回る。
関連論文リスト
- DiMoDif: Discourse Modality-information Differentiation for Audio-visual Deepfake Detection and Localization [13.840950434728533]
本稿では,新しいオーディオ・ビジュアル・ディープフェイク検出フレームワークを提案する。
実際のサンプルでは、ディープフェイクとは対照的に、視覚信号と音声信号は情報の観点から一致しているという仮定に基づいている。
ビデオと音声の音声認識に特化しているディープネットワークの機能を、フレームレベルのクロスモーダルな矛盾を見つけるために使用しています。
論文 参考訳(メタデータ) (2024-11-15T13:47:33Z) - Contextual Cross-Modal Attention for Audio-Visual Deepfake Detection and Localization [3.9440964696313485]
デジタル時代には、ディープフェイクや合成メディアの出現は、社会的・政治的整合性に対する重大な脅威となる。
オーディオ視覚のようなマルチモーダル操作に基づくディープフェイクは、より現実的であり、より大きな脅威をもたらす。
本稿では,音声・視覚的ディープフェイク検出にコンテキスト情報を活用する,リカレントニューラルネットワーク(RNN)に基づく新しいマルチモーダルアテンションフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-02T18:45:01Z) - AV-Lip-Sync+: Leveraging AV-HuBERT to Exploit Multimodal Inconsistency
for Video Deepfake Detection [32.502184301996216]
マルチモーダル操作(オーディオ・ヴィジュアル・ディープフェイクとも呼ばれる)は、一方的なディープフェイク検出器がマルチメディアコンテンツの偽造を検出するのを困難にしている。
従来は、一様ビデオ法則を主に採用し、教師付き事前訓練を用いて偽造検出を行った。
本研究では,マルチモーダル自己教師付き学習(SSL)機能抽出器に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2023-11-05T18:35:03Z) - AVTENet: Audio-Visual Transformer-based Ensemble Network Exploiting
Multiple Experts for Video Deepfake Detection [53.448283629898214]
近年の超現実的なディープフェイクビデオの普及は、オーディオと視覚の偽造の脅威に注意を向けている。
AI生成のフェイクビデオの検出に関するこれまでのほとんどの研究は、視覚的モダリティまたはオーディオ的モダリティのみを使用していた。
音響操作と視覚操作の両方を考慮したAVTENet(Audio-Visual Transformer-based Ensemble Network)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-19T19:01:26Z) - MIS-AVoiDD: Modality Invariant and Specific Representation for
Audio-Visual Deepfake Detection [4.659427498118277]
新しいタイプのディープフェイクが登場し、オーディオまたは視覚的モーダルが操作された。
既存のマルチモーダルディープフェイク検出器は、しばしばビデオからのオーディオとビジュアルストリームの融合に基づいている。
本稿では,マルチモーダルディープフェイク検出のための音声と視覚ストリームの融合を支援するために,表現レベルでの問題に取り組む。
論文 参考訳(メタデータ) (2023-10-03T17:43:24Z) - Improving Audio-Visual Speech Recognition by Lip-Subword Correlation
Based Visual Pre-training and Cross-Modal Fusion Encoder [58.523884148942166]
本稿では,事前学習および微調整訓練の枠組みの下で,音声視覚音声認識(AVSR)を改善するための2つの新しい手法を提案する。
まず, マンダリンにおける口唇形状と音節レベルサブワード単位の相関について検討し, 口唇形状から良好なフレームレベル音節境界を確立する。
次に,音声誘導型クロスモーダルフュージョンエンコーダ(CMFE)ニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2023-08-14T08:19:24Z) - NPVForensics: Jointing Non-critical Phonemes and Visemes for Deepfake
Detection [50.33525966541906]
既存のマルチモーダル検出手法は、Deepfakeビデオを公開するために、音声と視覚の不整合をキャプチャする。
NPVForensics と呼ばれる非臨界音素とビセムの相関関係を抽出する新しいディープフェイク検出法を提案する。
我々のモデルは、微調整で下流のDeepfakeデータセットに容易に適応できる。
論文 参考訳(メタデータ) (2023-06-12T06:06:05Z) - Zorro: the masked multimodal transformer [68.99684436029884]
ゾロ(Zorro)は、トランスフォーマー内の各モードからの入力をどのようにルーティングするかを制御するためにマスクを使用するテクニックである。
対照的な事前学習により、Zorroはマルチモーダルタスクの最も関連性の高いベンチマークで最先端の結果が得られることを示す。
論文 参考訳(メタデータ) (2023-01-23T17:51:39Z) - M2TR: Multi-modal Multi-scale Transformers for Deepfake Detection [74.19291916812921]
Deepfake技術によって生成された鍛造画像は、デジタル情報の信頼性に深刻な脅威をもたらします。
本稿では,Deepfake検出のための微妙な操作アーチファクトを異なるスケールで捉えることを目的とする。
最先端の顔スワッピングと顔の再現方法によって生成された4000のDeepFakeビデオで構成される高品質のDeepFakeデータセットSR-DFを紹介します。
論文 参考訳(メタデータ) (2021-04-20T05:43:44Z) - Emotions Don't Lie: An Audio-Visual Deepfake Detection Method Using
Affective Cues [75.1731999380562]
本稿では,実・偽のディープフェイクマルチメディアコンテンツを検出する学習手法を提案する。
我々は,同じビデオから2つのオーディオと視覚の類似性を抽出し,解析する。
我々は,いくつかのSOTAディープフェイク検出手法との比較を行い,DFDCでは84.4%,DF-TIMITデータセットでは96.6%の動画AUCを報告した。
論文 参考訳(メタデータ) (2020-03-14T22:07:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。