Exploring the Benefits of Differentially Private Pre-training and
Parameter-Efficient Fine-tuning for Table Transformers
- URL: http://arxiv.org/abs/2309.06526v1
- Date: Tue, 12 Sep 2023 19:08:26 GMT
- Title: Exploring the Benefits of Differentially Private Pre-training and
Parameter-Efficient Fine-tuning for Table Transformers
- Authors: Xilong Wang, Chia-Mu Yu, and Pin-Yu Chen
- Abstract summary: Table Transformer (TabTransformer) is a state-of-the-art neural network model, while Differential Privacy (DP) is an essential component to ensure data privacy.
In this paper, we explore the benefits of combining these two aspects together in the scenario of transfer learning.
- Score: 56.00476706550681
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For machine learning with tabular data, Table Transformer (TabTransformer) is
a state-of-the-art neural network model, while Differential Privacy (DP) is an
essential component to ensure data privacy. In this paper, we explore the
benefits of combining these two aspects together in the scenario of transfer
learning -- differentially private pre-training and fine-tuning of
TabTransformers with a variety of parameter-efficient fine-tuning (PEFT)
methods, including Adapter, LoRA, and Prompt Tuning. Our extensive experiments
on the ACSIncome dataset show that these PEFT methods outperform traditional
approaches in terms of the accuracy of the downstream task and the number of
trainable parameters, thus achieving an improved trade-off among parameter
efficiency, privacy, and accuracy. Our code is available at
github.com/IBM/DP-TabTransformer.
Related papers
- Visual Fourier Prompt Tuning [63.66866445034855]
We propose the Visual Fourier Prompt Tuning (VFPT) method as a general and effective solution for adapting large-scale transformer-based models.
Our approach incorporates the Fast Fourier Transform into prompt embeddings and harmoniously considers both spatial and frequency domain information.
Our results demonstrate that our approach outperforms current state-of-the-art baselines on two benchmarks.
arXiv Detail & Related papers (2024-11-02T18:18:35Z) - iConFormer: Dynamic Parameter-Efficient Tuning with Input-Conditioned Adaptation [15.97351561456467]
In this paper, we propose a novel PEFT approach, input-Conditioned transFormer, termed iConFormer.
We introduce an input-Conditioned Network (iCoN) in the dynamic adapter that enables instance-level feature transformation.
To be specific, iCoN generates channel-wise convolutional kernels for each feature and transform it using adaptive convolution process to effectively capture task-specific and fine-grained details tailor to downstream tasks.
arXiv Detail & Related papers (2024-09-04T16:06:23Z) - Dynamic Tuning Towards Parameter and Inference Efficiency for ViT Adaptation [67.13876021157887]
Dynamic Tuning (DyT) is a novel approach to improve both parameter and inference efficiency for ViT adaptation.
DyT achieves superior performance compared to existing PEFT methods while evoking only 71% of their FLOPs on the VTAB-1K benchmark.
arXiv Detail & Related papers (2024-03-18T14:05:52Z) - Parameter-Efficient Orthogonal Finetuning via Butterfly Factorization [102.92240148504774]
We study a principled finetuning paradigm -- Orthogonal Finetuning (OFT) -- for downstream task adaptation.
Despite demonstrating good generalizability, OFT still uses a fairly large number of trainable parameters.
We apply this parameterization to OFT, creating a novel parameter-efficient finetuning method, called Orthogonal Butterfly (BOFT)
arXiv Detail & Related papers (2023-11-10T18:59:54Z) - Sensitivity-Aware Visual Parameter-Efficient Fine-Tuning [91.5113227694443]
We propose a novel visual.
sensuous-aware fine-Tuning (SPT) scheme.
SPT allocates trainable parameters to task-specific important positions.
Experiments on a wide range of downstream recognition tasks show that our SPT is complementary to the existing PEFT methods.
arXiv Detail & Related papers (2023-03-15T12:34:24Z) - Evaluating Parameter-Efficient Transfer Learning Approaches on SURE
Benchmark for Speech Understanding [40.27182770995891]
Fine-tuning is widely used as the default algorithm for transfer learning from pre-trained models.
We introduce the Speech UndeRstanding Evaluation (SURE) benchmark for parameter-efficient learning for various speech-processing tasks.
arXiv Detail & Related papers (2023-03-02T08:57:33Z) - CLMFormer: Mitigating Data Redundancy to Revitalize Transformer-based
Long-Term Time Series Forecasting System [46.39662315849883]
Long-term time-series forecasting (LTSF) plays a crucial role in various practical applications.
Existing Transformer-based models, such as Fedformer and Informer, often achieve their best performances on validation sets after just a few epochs.
We propose a novel approach to address this issue by employing curriculum learning and introducing a memory-driven decoder.
arXiv Detail & Related papers (2022-07-16T04:05:15Z) - Visual Prompt Tuning [74.5309408185523]
This paper introduces Visual Prompt Tuning (VPT) as an efficient and effective alternative to full fine-tuning for large-scale Transformer models in vision.
VPT introduces only a small amount (less than 1% of model parameters) of trainable parameters in the input space while keeping the model backbone frozen.
arXiv Detail & Related papers (2022-03-23T01:17:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.