Parameter-Efficient Orthogonal Finetuning via Butterfly Factorization
- URL: http://arxiv.org/abs/2311.06243v2
- Date: Sun, 28 Apr 2024 20:05:02 GMT
- Title: Parameter-Efficient Orthogonal Finetuning via Butterfly Factorization
- Authors: Weiyang Liu, Zeju Qiu, Yao Feng, Yuliang Xiu, Yuxuan Xue, Longhui Yu, Haiwen Feng, Zhen Liu, Juyeon Heo, Songyou Peng, Yandong Wen, Michael J. Black, Adrian Weller, Bernhard Schölkopf,
- Abstract summary: We study a principled finetuning paradigm -- Orthogonal Finetuning (OFT) -- for downstream task adaptation.
Despite demonstrating good generalizability, OFT still uses a fairly large number of trainable parameters.
We apply this parameterization to OFT, creating a novel parameter-efficient finetuning method, called Orthogonal Butterfly (BOFT)
- Score: 102.92240148504774
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large foundation models are becoming ubiquitous, but training them from scratch is prohibitively expensive. Thus, efficiently adapting these powerful models to downstream tasks is increasingly important. In this paper, we study a principled finetuning paradigm -- Orthogonal Finetuning (OFT) -- for downstream task adaptation. Despite demonstrating good generalizability, OFT still uses a fairly large number of trainable parameters due to the high dimensionality of orthogonal matrices. To address this, we start by examining OFT from an information transmission perspective, and then identify a few key desiderata that enable better parameter-efficiency. Inspired by how the Cooley-Tukey fast Fourier transform algorithm enables efficient information transmission, we propose an efficient orthogonal parameterization using butterfly structures. We apply this parameterization to OFT, creating a novel parameter-efficient finetuning method, called Orthogonal Butterfly (BOFT). By subsuming OFT as a special case, BOFT introduces a generalized orthogonal finetuning framework. Finally, we conduct an extensive empirical study of adapting large vision transformers, large language models, and text-to-image diffusion models to various downstream tasks in vision and language.
Related papers
- Visual Fourier Prompt Tuning [63.66866445034855]
We propose the Visual Fourier Prompt Tuning (VFPT) method as a general and effective solution for adapting large-scale transformer-based models.
Our approach incorporates the Fast Fourier Transform into prompt embeddings and harmoniously considers both spatial and frequency domain information.
Our results demonstrate that our approach outperforms current state-of-the-art baselines on two benchmarks.
arXiv Detail & Related papers (2024-11-02T18:18:35Z) - Spectrum-Aware Parameter Efficient Fine-Tuning for Diffusion Models [73.88009808326387]
We propose a novel spectrum-aware adaptation framework for generative models.
Our method adjusts both singular values and their basis vectors of pretrained weights.
We introduce Spectral Ortho Decomposition Adaptation (SODA), which balances computational efficiency and representation capacity.
arXiv Detail & Related papers (2024-05-31T17:43:35Z) - Parameter Efficient Quasi-Orthogonal Fine-Tuning via Givens Rotation [20.47507483613317]
One representative line of fine-tuning methods is Orthogonal Fine-tuning (OFT)
OFT rigorously preserves the angular distances within the parameter space to preserve the pretrained knowledge.
We propose quasi-Givens Orthogonal Fine-Tuning (qGOFT) to address the problems.
arXiv Detail & Related papers (2024-04-05T15:28:44Z) - Dynamic Tuning Towards Parameter and Inference Efficiency for ViT Adaptation [67.13876021157887]
Dynamic Tuning (DyT) is a novel approach to improve both parameter and inference efficiency for ViT adaptation.
DyT achieves superior performance compared to existing PEFT methods while evoking only 71% of their FLOPs on the VTAB-1K benchmark.
arXiv Detail & Related papers (2024-03-18T14:05:52Z) - E^2VPT: An Effective and Efficient Approach for Visual Prompt Tuning [55.50908600818483]
Fine-tuning large-scale pretrained vision models for new tasks has become increasingly parameter-intensive.
We propose an Effective and Efficient Visual Prompt Tuning (E2VPT) approach for large-scale transformer-based model adaptation.
Our approach outperforms several state-of-the-art baselines on two benchmarks.
arXiv Detail & Related papers (2023-07-25T19:03:21Z) - Towards Adaptive Prefix Tuning for Parameter-Efficient Language Model
Fine-tuning [32.84435258519842]
We propose Adaptive Prefix Tuning (APT) to adjust the prefix in terms of both fine-grained token level and coarse-grained layer level with a gate mechanism.
Experiments on the SuperGLUE and NER datasets show the effectiveness of APT.
arXiv Detail & Related papers (2023-05-24T14:51:01Z) - Global Vision Transformer Pruning with Hessian-Aware Saliency [93.33895899995224]
This work challenges the common design philosophy of the Vision Transformer (ViT) model with uniform dimension across all the stacked blocks in a model stage.
We derive a novel Hessian-based structural pruning criteria comparable across all layers and structures, with latency-aware regularization for direct latency reduction.
Performing iterative pruning on the DeiT-Base model leads to a new architecture family called NViT (Novel ViT), with a novel parameter that utilizes parameters more efficiently.
arXiv Detail & Related papers (2021-10-10T18:04:59Z) - Federated Bayesian Optimization via Thompson Sampling [33.087439644066876]
This paper presents federated Thompson sampling (FTS) which overcomes a number of key challenges of FBO and FL in a principled way.
We empirically demonstrate the effectiveness of FTS in terms of communication efficiency, computational efficiency, and practical performance.
arXiv Detail & Related papers (2020-10-20T09:42:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.