Deciding Differential Privacy of Online Algorithms with Multiple Variables
- URL: http://arxiv.org/abs/2309.06615v1
- Date: Tue, 12 Sep 2023 22:03:01 GMT
- Title: Deciding Differential Privacy of Online Algorithms with Multiple Variables
- Authors: Rohit Chadha, A. Prasad Sistla, Mahesh Viswanathan, Bishnu Bhusal,
- Abstract summary: This paper generalizes an automaton model called DiP automata to describe such algorithms.
Our PSPACE algorithm also computes a value for $mathfrakD$ when the given automaton is differentially private.
- Score: 0.41248472494152805
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We consider the problem of checking the differential privacy of online randomized algorithms that process a stream of inputs and produce outputs corresponding to each input. This paper generalizes an automaton model called DiP automata (See arXiv:2104.14519) to describe such algorithms by allowing multiple real-valued storage variables. A DiP automaton is a parametric automaton whose behavior depends on the privacy budget $\epsilon$. An automaton $A$ will be said to be differentially private if, for some $\mathfrak{D}$, the automaton is $\mathfrak{D}\epsilon$-differentially private for all values of $\epsilon>0$. We identify a precise characterization of the class of all differentially private DiP automata. We show that the problem of determining if a given DiP automaton belongs to this class is PSPACE-complete. Our PSPACE algorithm also computes a value for $\mathfrak{D}$ when the given automaton is differentially private. The algorithm has been implemented, and experiments demonstrating its effectiveness are presented.
Related papers
- On Computing Pairwise Statistics with Local Differential Privacy [55.81991984375959]
We study the problem of computing pairwise statistics, i.e., ones of the form $binomn2-1 sum_i ne j f(x_i, x_j)$, where $x_i$ denotes the input to the $i$th user, with differential privacy (DP) in the local model.
This formulation captures important metrics such as Kendall's $tau$ coefficient, Area Under Curve, Gini's mean difference, Gini's entropy, etc.
arXiv Detail & Related papers (2024-06-24T04:06:09Z) - Anonymized Histograms in Intermediate Privacy Models [54.32252900997422]
We provide an algorithm with a nearly matching error guarantee of $tildeO_varepsilon(sqrtn)$ in the shuffle DP and pan-private models.
Our algorithm is very simple: it just post-processes the discrete Laplace-noised histogram.
arXiv Detail & Related papers (2022-10-27T05:11:00Z) - Faster Privacy Accounting via Evolving Discretization [54.32252900997422]
We introduce a new algorithm for numerical composition of privacy random variables.
Our algorithm achieves a running time and memory usage of $mathrmpolylog(k)$ for the task of self-composing a mechanism.
arXiv Detail & Related papers (2022-07-10T04:25:37Z) - Scalable Differentially Private Clustering via Hierarchically Separated
Trees [82.69664595378869]
We show that our method computes a solution with cost at most $O(d3/2log n)cdot OPT + O(k d2 log2 n / epsilon2)$, where $epsilon$ is the privacy guarantee.
Although the worst-case guarantee is worse than that of state of the art private clustering methods, the algorithm we propose is practical.
arXiv Detail & Related papers (2022-06-17T09:24:41Z) - Locally Differentially Private Reinforcement Learning for Linear Mixture
Markov Decision Processes [78.27542864367821]
Reinforcement learning (RL) algorithms can be used to provide personalized services, which rely on users' private and sensitive data.
To protect the users' privacy, privacy-preserving RL algorithms are in demand.
We propose a novel $(varepsilon, delta)$-LDP algorithm for learning a class of Markov decision processes (MDPs) dubbed linear mixture MDPs.
arXiv Detail & Related papers (2021-10-19T17:44:09Z) - Locally Private Hypothesis Selection [96.06118559817057]
We output a distribution from $mathcalQ$ whose total variation distance to $p$ is comparable to the best such distribution.
We show that the constraint of local differential privacy incurs an exponential increase in cost.
Our algorithms result in exponential improvements on the round complexity of previous methods.
arXiv Detail & Related papers (2020-02-21T18:30:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.