論文の概要: ZKROWNN: Zero Knowledge Right of Ownership for Neural Networks
- arxiv url: http://arxiv.org/abs/2309.06779v1
- Date: Wed, 13 Sep 2023 08:06:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 06:43:22.318442
- Title: ZKROWNN: Zero Knowledge Right of Ownership for Neural Networks
- Title(参考訳): ZKROWNN: ニューラルネットワークのオーナシップのゼロ知識
- Authors: Nojan Sheybani, Zahra Ghodsi, Ritvik Kapila, Farinaz Koushanfar,
- Abstract要約: ZKROWNNはZero-Knowledge Proofs(ZKP)を利用した最初のエンドツーエンドフレームワークである。
ZKROWNNは、サードパーティのクライアントがモデルオーナシップを1秒以内で検証できるようにする。
- 参考スコア(独自算出の注目度): 14.435398248169774
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Training contemporary AI models requires investment in procuring learning data and computing resources, making the models intellectual property of the owners. Popular model watermarking solutions rely on key input triggers for detection; the keys have to be kept private to prevent discovery, forging, and removal of the hidden signatures. We present ZKROWNN, the first automated end-to-end framework utilizing Zero-Knowledge Proofs (ZKP) that enable an entity to validate their ownership of a model, while preserving the privacy of the watermarks. ZKROWNN permits a third party client to verify model ownership in less than a second, requiring as little as a few KBs of communication.
- Abstract(参考訳): 現代のAIモデルをトレーニングするには、学習データとコンピューティングリソースの調達に投資する必要がある。
一般的なモデルウォーターマーキングソリューションは、検出のためのキー入力トリガに依存している。
ZKROWNNはZero-Knowledge Proofs (ZKP) を利用した初の自動エンドツーエンドフレームワークである。
ZKROWNNは、サードパーティのクライアントがモデルオーナシップを1秒以内で検証できるようにする。
関連論文リスト
- A2-DIDM: Privacy-preserving Accumulator-enabled Auditing for Distributed Identity of DNN Model [43.10692581757967]
DNNモデルの分散IDのための新しい累積型監査法(A2-DIDM)を提案する。
A2-DIDMは、ブロックチェーンとゼロ知識技術を使用して、軽量なオンチェーンオーナシップ認証を確保しながら、データの保護とプライバシ機能を実現している。
論文 参考訳(メタデータ) (2024-05-07T08:24:50Z) - Trustless Audits without Revealing Data or Models [49.23322187919369]
モデルプロバイダが(アーキテクチャではなく)モデルウェイトとデータシークレットを維持しながら、他のパーティがモデルとデータプロパティを信頼性のない監査を行うことが可能であることを示す。
私たちはZkAuditと呼ばれるプロトコルを設計し、モデルプロバイダがデータセットとモデルの重みの暗号的コミットメントを公開します。
論文 参考訳(メタデータ) (2024-04-06T04:43:06Z) - Safe and Robust Watermark Injection with a Single OoD Image [90.71804273115585]
高性能なディープニューラルネットワークをトレーニングするには、大量のデータと計算リソースが必要である。
安全で堅牢なバックドア型透かし注入法を提案する。
我々は,透かし注入時のモデルパラメータのランダムな摂動を誘導し,一般的な透かし除去攻撃に対する防御を行う。
論文 参考訳(メタデータ) (2023-09-04T19:58:35Z) - FedSOV: Federated Model Secure Ownership Verification with Unforgeable
Signature [60.99054146321459]
フェデレートラーニングにより、複数のパーティがプライベートデータを公開せずにグローバルモデルを学ぶことができる。
本稿では,FedSOVという暗号署名に基づくフェデレート学習モデルのオーナシップ検証手法を提案する。
論文 参考訳(メタデータ) (2023-05-10T12:10:02Z) - Untargeted Backdoor Watermark: Towards Harmless and Stealthy Dataset
Copyright Protection [69.59980270078067]
我々は,異常なモデル行動が決定論的でない,未目標のバックドア透かし方式を探索する。
また、提案した未ターゲットのバックドア透かしをデータセットのオーナシップ検証に利用する方法について論じる。
論文 参考訳(メタデータ) (2022-09-27T12:56:56Z) - PCPT and ACPT: Copyright Protection and Traceability Scheme for DNN
Models [13.043683635373213]
ディープニューラルネットワーク(DNN)は人工知能(AI)分野で大きな成功を収めている。
DNNモデルは、簡単に違法にコピーしたり、再配布したり、犯罪者に虐待されたりすることができる。
論文 参考訳(メタデータ) (2022-06-06T12:12:47Z) - FedIPR: Ownership Verification for Federated Deep Neural Network Models [31.459374163080994]
これらのモデルは、複数の機関や人々が所有する貴重なトレーニングデータに基づいて構築されているため、フェデレートされた学習モデルは、盗作行為から保護されなければならない。
本稿では、FedDNNモデルの知的財産権(IPR)を主張するために、所有権署名を埋め込み、検証できる新しいフェデレーションディープニューラルネットワーク(FedDNN)のオーナシップ検証スキームについて述べる。
論文 参考訳(メタデータ) (2021-09-27T12:51:24Z) - HufuNet: Embedding the Left Piece as Watermark and Keeping the Right
Piece for Ownership Verification in Deep Neural Networks [16.388046449021466]
深部ニューラルネットワーク(DNN)を透かしする新しいソリューションを提案する。
HufuNetは、モデル微調整/pruning、カーネルのカットオフ/補完、機能相当の攻撃、不正所有クレームに対して非常に堅牢です。
論文 参考訳(メタデータ) (2021-03-25T06:55:22Z) - Automatically Lock Your Neural Networks When You're Away [5.153873824423363]
ローカルな動的アクセス制御を備えたエンドツーエンドのニューラルネットワークを実現するモデルロック(M-LOCK)を提案する。
3種類のモデルトレーニング戦略は、1つのニューラルネットワークで認証された入力と疑似入力の間の膨大なパフォーマンスの相違を達成するために不可欠である。
論文 参考訳(メタデータ) (2021-03-15T15:47:54Z) - Don't Forget to Sign the Gradients! [60.98885980669777]
GradSignsはディープニューラルネットワーク(DNN)のための新しい透かしフレームワーク
深部ニューラルネットワーク(DNN)のための新しい透かしフレームワークであるGradSignsを紹介します。
論文 参考訳(メタデータ) (2021-03-05T14:24:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。