When Geoscience Meets Foundation Models: Towards General Geoscience Artificial Intelligence System
- URL: http://arxiv.org/abs/2309.06799v3
- Date: Fri, 15 Mar 2024 02:37:52 GMT
- Title: When Geoscience Meets Foundation Models: Towards General Geoscience Artificial Intelligence System
- Authors: Hao Zhang, Jin-Jian Xu, Hong-Wei Cui, Lin Li, Yaowen Yang, Chao-Sheng Tang, Niklas Boers,
- Abstract summary: Geoscience foundation models (GFMs) represent a revolutionary approach within Earth sciences to integrate massive cross-disciplinary data.
GFMs extract valuable insights from petabytes of both structured and unstructured data.
Despite current limitations, GFMs hold great promise for providing critical insights into pressing issues including climate change, natural hazards, and sustainability.
- Score: 6.445323648941926
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Geoscience foundation models (GFMs) represent a revolutionary approach within Earth sciences to integrate massive cross-disciplinary data for improved simulation and understanding of Earth system dynamics. As a data-centric artificial intelligence paradigm, GFMs extract valuable insights from petabytes of both structured and unstructured data. Their versatility in task specification, diverse inputs and outputs, and multi-modal knowledge representation enable a comprehensive analysis that surpasses the capabilities of individual data sources. Critically, the scalability and generalizability of GFMs empower them to address a wide array of prediction, simulation, and decision tasks related to the intricate interactions among Earth system components. By unraveling the causal mechanisms underlying observed patterns and changes, GFMs contribute to advancing our knowledge of the Earth system and its responses to various drivers and perturbations. Collaboration between domain experts and computer scientists plays a pivotal role in fostering innovations in these invaluable tools for understanding the past, present, and future of our planet. Moreover, we introduce recent advances including key technologies for constructing GFMs, especially remote sensing applications. However, challenges remain in validation and verification, scalability, interpretability, knowledge representation, and addressing social bias. Going forward, the key lies in enhancing model integration, resolution, accuracy, and equity through interdisciplinary teamwork. Despite current limitations, GFMs hold great promise for providing critical insights into pressing issues including climate change, natural hazards, and sustainability through their ability to explore multiple scenarios and quantify uncertainties. Their continued evolution toward integrated, data-driven modeling holds paradigm-shifting potential for Earth science.
Related papers
- Anomaly Detection and Generation with Diffusion Models: A Survey [51.61574868316922]
Anomaly detection (AD) plays a pivotal role across diverse domains, including cybersecurity, finance, healthcare, and industrial manufacturing.<n>Recent advancements in deep learning, specifically diffusion models (DMs), have sparked significant interest.<n>This survey aims to guide researchers and practitioners in leveraging DMs for innovative AD solutions across diverse applications.
arXiv Detail & Related papers (2025-06-11T03:29:18Z) - Graph Foundation Models: A Comprehensive Survey [66.74249119139661]
Graph Foundation Models (GFMs) aim to bring scalable, general-purpose intelligence to structured data.<n>This survey provides a comprehensive overview of GFMs, unifying diverse efforts under a modular framework.<n>GFMs are poised to become foundational infrastructure for open-ended reasoning over structured data.
arXiv Detail & Related papers (2025-05-21T05:08:00Z) - On the workflow, opportunities and challenges of developing foundation model in geophysics [9.358947092397052]
This paper systematically explores the entire process of developing foundation models in conjunction with geophysical data.
Considering the diversity, complexity, and physical consistency constraints of geophysical data, we discuss targeted solutions.
We discuss how to leverage the transfer learning capabilities of foundation models to reduce reliance on labeled data, enhance computational efficiency, and incorporate physical constraints into model training.
arXiv Detail & Related papers (2025-04-24T09:08:24Z) - A Survey on Post-training of Large Language Models [185.51013463503946]
Large Language Models (LLMs) have fundamentally transformed natural language processing, making them indispensable across domains ranging from conversational systems to scientific exploration.
These challenges necessitate advanced post-training language models (PoLMs) to address shortcomings, such as restricted reasoning capacities, ethical uncertainties, and suboptimal domain-specific performance.
This paper presents the first comprehensive survey of PoLMs, systematically tracing their evolution across five core paradigms.
arXiv Detail & Related papers (2025-03-08T05:41:42Z) - Graph Foundation Models for Recommendation: A Comprehensive Survey [55.70529188101446]
Large language models (LLMs) are designed to process and comprehend natural language, making both approaches highly effective and widely adopted.
Recent research has focused on graph foundation models (GFMs)
GFMs integrate the strengths of GNNs and LLMs to model complex RS problems more efficiently by leveraging the graph-based structure of user-item relationships alongside textual understanding.
arXiv Detail & Related papers (2025-02-12T12:13:51Z) - Generative Artificial Intelligence Meets Synthetic Aperture Radar: A Survey [49.29751866761522]
This paper aims to investigate the intersection of GenAI and SAR.
First, we illustrate the common data generation-based applications in SAR field.
Then, an overview of the latest GenAI models is systematically reviewed.
Finally, the corresponding applications in SAR domain are also included.
arXiv Detail & Related papers (2024-11-05T03:06:00Z) - Foundation Models for Remote Sensing and Earth Observation: A Survey [101.77425018347557]
This survey systematically reviews the emerging field of Remote Sensing Foundation Models (RSFMs)
It begins with an outline of their motivation and background, followed by an introduction of their foundational concepts.
We benchmark these models against publicly available datasets, discuss existing challenges, and propose future research directions.
arXiv Detail & Related papers (2024-10-22T01:08:21Z) - Towards Vision-Language Geo-Foundation Model: A Survey [65.70547895998541]
Vision-Language Foundation Models (VLFMs) have made remarkable progress on various multimodal tasks.
This paper thoroughly reviews VLGFMs, summarizing and analyzing recent developments in the field.
arXiv Detail & Related papers (2024-06-13T17:57:30Z) - GenBench: A Benchmarking Suite for Systematic Evaluation of Genomic Foundation Models [56.63218531256961]
We introduce GenBench, a benchmarking suite specifically tailored for evaluating the efficacy of Genomic Foundation Models.
GenBench offers a modular and expandable framework that encapsulates a variety of state-of-the-art methodologies.
We provide a nuanced analysis of the interplay between model architecture and dataset characteristics on task-specific performance.
arXiv Detail & Related papers (2024-06-01T08:01:05Z) - Towards Next-Generation Urban Decision Support Systems through AI-Powered Construction of Scientific Ontology using Large Language Models -- A Case in Optimizing Intermodal Freight Transportation [1.6230958216521798]
This study investigates the potential of leveraging the pre-trained Large Language Models (LLMs)
By adopting ChatGPT API as the reasoning core, we outline an integrated workflow that encompasses natural language processing, methontology-based prompt tuning, and transformers.
The outcomes of our methodology are knowledge graphs in widely adopted ontology languages (e.g., OWL, RDF, SPARQL)
arXiv Detail & Related papers (2024-05-29T16:40:31Z) - When Geoscience Meets Generative AI and Large Language Models:
Foundations, Trends, and Future Challenges [4.013156524547072]
Generative Artificial Intelligence (GAI) represents an emerging field that promises the creation of synthetic data and outputs in different modalities.
This paper explores the potential applications of generative AI and large language models in geoscience.
arXiv Detail & Related papers (2024-01-25T12:03:50Z) - Forging Vision Foundation Models for Autonomous Driving: Challenges,
Methodologies, and Opportunities [59.02391344178202]
Vision foundation models (VFMs) serve as potent building blocks for a wide range of AI applications.
The scarcity of comprehensive training data, the need for multi-sensor integration, and the diverse task-specific architectures pose significant obstacles to the development of VFMs.
This paper delves into the critical challenge of forging VFMs tailored specifically for autonomous driving, while also outlining future directions.
arXiv Detail & Related papers (2024-01-16T01:57:24Z) - Towards Graph Foundation Models: A Survey and Beyond [66.37994863159861]
Foundation models have emerged as critical components in a variety of artificial intelligence applications.
The capabilities of foundation models to generalize and adapt motivate graph machine learning researchers to discuss the potential of developing a new graph learning paradigm.
This article introduces the concept of Graph Foundation Models (GFMs), and offers an exhaustive explanation of their key characteristics and underlying technologies.
arXiv Detail & Related papers (2023-10-18T09:31:21Z) - Differentiable modeling to unify machine learning and physical models
and advance Geosciences [38.92849886903847]
We outline the concepts, applicability, and significance of differentiable geoscientific modeling (DG)
"Differentiable" refers to accurately and efficiently calculating gradients with respect to model variables.
Preliminary evidence suggests DG offers better interpretability and causality than Machine Learning.
arXiv Detail & Related papers (2023-01-10T15:24:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.