論文の概要: When Geoscience Meets Foundation Models: Towards General Geoscience Artificial Intelligence System
- arxiv url: http://arxiv.org/abs/2309.06799v5
- Date: Tue, 12 Nov 2024 14:00:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-13 13:16:30.451550
- Title: When Geoscience Meets Foundation Models: Towards General Geoscience Artificial Intelligence System
- Title(参考訳): 地球科学と基礎モデル:一般地球科学人工知能システムを目指して
- Authors: Hao Zhang, Jin-Jian Xu, Hong-Wei Cui, Lin Li, Yaowen Yang, Chao-Sheng Tang, Niklas Boers,
- Abstract要約: 地球科学基礎モデル(Geoscience foundation model, GFMs)は、地球系の力学のシミュレーションと理解を強化するために、広範な学際データを統合するパラダイムシフトソリューションである。
GFMのユニークな長所は、フレキシブルなタスク仕様、多様な入出力能力、マルチモーダルな知識表現である。
このレビューは、先進的なAI技術と地球科学の交差点における未解決の機会を強調した、新興の地球科学研究パラダイムの包括的概要を提供する。
- 参考スコア(独自算出の注目度): 6.445323648941926
- License:
- Abstract: Artificial intelligence (AI) has significantly advanced Earth sciences, yet its full potential in to comprehensively modeling Earth's complex dynamics remains unrealized. Geoscience foundation models (GFMs) emerge as a paradigm-shifting solution, integrating extensive cross-disciplinary data to enhance the simulation and understanding of Earth system dynamics. These data-centric AI models extract insights from petabytes of structured and unstructured data, effectively addressing the complexities of Earth systems that traditional models struggle to capture. The unique strengths of GFMs include flexible task specification, diverse input-output capabilities, and multi-modal knowledge representation, enabling analyses that surpass those of individual data sources or traditional AI methods. This review not only highlights the key advantages of GFMs, but also presents essential techniques for their construction, with a focus on transformers, pre-training, and adaptation strategies. Subsequently, we examine recent advancements in GFMs, including large language models, vision models, and vision-language models, particularly emphasizing the potential applications in remote sensing. Additionally, the review concludes with a comprehensive analysis of the challenges and future trends in GFMs, addressing five critical aspects: data integration, model complexity, uncertainty quantification, interdisciplinary collaboration, and concerns related to privacy, trust, and security. This review offers a comprehensive overview of emerging geoscientific research paradigms, emphasizing the untapped opportunities at the intersection of advanced AI techniques and geoscience. It examines major methodologies, showcases advances in large-scale models, and discusses the challenges and prospects that will shape the future landscape of GFMs.
- Abstract(参考訳): 人工知能(AI)は地球科学を著しく進歩させたが、地球の複雑な力学を包括的にモデル化する大きな可能性を秘めている。
地球科学基礎モデル(GFM)はパラダイムシフトソリューションとして登場し、地球系の力学のシミュレーションと理解を強化するために広範な学際データを統合する。
これらのデータ中心のAIモデルは、構造的および非構造的データのペタバイト単位から洞察を抽出し、従来のモデルが捉えるのに苦労する地球のシステムの複雑さに効果的に対処する。
GFMの独特な強みは、フレキシブルなタスク仕様、多様な入出力能力、マルチモーダルな知識表現である。
このレビューは、GFMの重要な利点だけでなく、トランスフォーマー、事前学習、適応戦略に焦点をあてて、構築に必要な技術も提示する。
その後、大規模言語モデル、視覚モデル、視覚言語モデルなど、近年のGFMの進歩について検討し、特にリモートセンシングにおける潜在的な応用を強調した。
さらに、データ統合、モデル複雑性、不確実性定量化、学際的コラボレーション、プライバシ、信頼、セキュリティに関する懸念の5つの重要な側面に対処する。
このレビューは、先進的なAI技術と地球科学の交差点における未解決の機会を強調した、新興の地球科学研究パラダイムの包括的概要を提供する。
主要な方法論を検証し、大規模モデルにおける進歩を示し、今後のGFMの展望を形作る挑戦と展望について論じる。
関連論文リスト
- Foundation Models for Remote Sensing and Earth Observation: A Survey [101.77425018347557]
本調査は、リモートセンシング基礎モデル(RSFM)の新しい分野を体系的にレビューする。
モチベーションと背景の概要から始まり、続いて基本概念が導入された。
我々はこれらのモデルを公開データセットと比較し、既存の課題について議論し、今後の研究方向性を提案する。
論文 参考訳(メタデータ) (2024-10-22T01:08:21Z) - Towards Vision-Language Geo-Foundation Model: A Survey [65.70547895998541]
Vision-Language Foundation Models (VLFMs) は、様々なマルチモーダルタスクにおいて顕著な進歩を遂げている。
本稿では, VLGFMを網羅的にレビューし, この分野の最近の展開を要約し, 分析する。
論文 参考訳(メタデータ) (2024-06-13T17:57:30Z) - GenBench: A Benchmarking Suite for Systematic Evaluation of Genomic Foundation Models [56.63218531256961]
我々はGenomic Foundation Modelsの有効性を評価するためのベンチマークスイートであるGenBenchを紹介する。
GenBenchはモジュラーで拡張可能なフレームワークを提供し、様々な最先端の方法論をカプセル化している。
本稿では,タスク固有性能におけるモデルアーキテクチャとデータセット特性の相互作用のニュアンス解析を行う。
論文 参考訳(メタデータ) (2024-06-01T08:01:05Z) - Towards Next-Generation Urban Decision Support Systems through AI-Powered Construction of Scientific Ontology using Large Language Models -- A Case in Optimizing Intermodal Freight Transportation [1.6230958216521798]
本研究では,事前学習された大規模言語モデル(LLM)を活用する可能性について検討する。
推論コアとしてChatGPT APIを採用することで、自然言語処理、メソノロジーベースのプロンプトチューニング、トランスフォーマーを含む統合ワークフローを概説する。
我々の方法論の成果は、広く採用されているオントロジー言語(OWL、RDF、SPARQLなど)の知識グラフである。
論文 参考訳(メタデータ) (2024-05-29T16:40:31Z) - When Geoscience Meets Generative AI and Large Language Models:
Foundations, Trends, and Future Challenges [4.013156524547072]
生成人工知能 (Generative Artificial Intelligence, GAI) は、合成データと出力を異なるモードで生成することを約束する新興分野である。
本稿では,地球科学における生成型AIと大規模言語モデルの可能性について検討する。
論文 参考訳(メタデータ) (2024-01-25T12:03:50Z) - Forging Vision Foundation Models for Autonomous Driving: Challenges,
Methodologies, and Opportunities [59.02391344178202]
ビジョンファウンデーションモデル(VFM)は、幅広いAIアプリケーションのための強力なビルディングブロックとして機能する。
総合的なトレーニングデータの不足、マルチセンサー統合の必要性、多様なタスク固有のアーキテクチャは、VFMの開発に重大な障害をもたらす。
本稿では、自動運転に特化したVFMを鍛造する上で重要な課題について述べるとともに、今後の方向性を概説する。
論文 参考訳(メタデータ) (2024-01-16T01:57:24Z) - Pathway to a fully data-driven geotechnics: lessons from materials
informatics [1.2172320168050468]
本稿では,データ駆動手法をジオテクニクスに統合する上での課題と機会について述べる。
深層学習の変換力を活用することで、より協調的で革新的な地学分野へのパラダイムシフトを構想する。
論文 参考訳(メタデータ) (2023-12-01T13:45:42Z) - Towards Graph Foundation Models: A Survey and Beyond [66.37994863159861]
ファンデーションモデルは、さまざまな人工知能アプリケーションにおいて重要なコンポーネントとして現れてきた。
基礎モデルがグラフ機械学習研究者を一般化し、適応させる能力は、新しいグラフ学習パラダイムを開発する可能性について議論する。
本稿では,グラフ基礎モデル(GFM)の概念を紹介し,その重要な特徴と基礎技術について概説する。
論文 参考訳(メタデータ) (2023-10-18T09:31:21Z) - Differentiable modeling to unify machine learning and physical models
and advance Geosciences [38.92849886903847]
微分可能地科学モデリング(DG)の概念,適用性,意義について概説する。
微分可能(differentiable)とは、モデル変数に関する勾配を正確かつ効率的に計算すること。
予備的な証拠は、DGが機械学習よりも優れた解釈可能性と因果性を提供することを示している。
論文 参考訳(メタデータ) (2023-01-10T15:24:14Z) - A General Purpose Neural Architecture for Geospatial Systems [142.43454584836812]
本稿では,空間的帰納バイアスを持つ汎用ニューラルアーキテクチャ(GPNA)の構築に向けたロードマップを示す。
このようなモデルがコミュニティのメンバー間の協力をいかに促進するかを考察する。
論文 参考訳(メタデータ) (2022-11-04T09:58:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。