Bayesian uncertainty-weighted loss for improved generalisability on polyp segmentation task
- URL: http://arxiv.org/abs/2309.06807v2
- Date: Fri, 14 Jun 2024 11:39:01 GMT
- Title: Bayesian uncertainty-weighted loss for improved generalisability on polyp segmentation task
- Authors: Rebecca S. Stone, Pedro E. Chavarrias-Solano, Andrew J. Bulpitt, David C. Hogg, Sharib Ali,
- Abstract summary: Variability due to appearance of polyps from one center to another, difference in endoscopic instrument grades, and acquisition quality result in methods with good performance on in-distribution test data.
Unfair models have serious implications and pose a critical challenge to clinical applications.
We adapt an implicit bias mitigation method which leverages Bayesian predictive uncertainties during training to encourage the model to focus on underrepresented sample regions.
- Score: 4.624678312108088
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While several previous studies have devised methods for segmentation of polyps, most of these methods are not rigorously assessed on multi-center datasets. Variability due to appearance of polyps from one center to another, difference in endoscopic instrument grades, and acquisition quality result in methods with good performance on in-distribution test data, and poor performance on out-of-distribution or underrepresented samples. Unfair models have serious implications and pose a critical challenge to clinical applications. We adapt an implicit bias mitigation method which leverages Bayesian predictive uncertainties during training to encourage the model to focus on underrepresented sample regions. We demonstrate the potential of this approach to improve generalisability without sacrificing state-of-the-art performance on a challenging multi-center polyp segmentation dataset (PolypGen) with different centers and image modalities.
Related papers
- ECC-PolypDet: Enhanced CenterNet with Contrastive Learning for Automatic
Polyp Detection [88.4359020192429]
Existing methods either involve computationally expensive context aggregation or lack prior modeling of polyps, resulting in poor performance in challenging cases.
In this paper, we propose the Enhanced CenterNet with Contrastive Learning (ECC-PolypDet), a two-stage training & end-to-end inference framework.
Box-assisted Contrastive Learning (BCL) during training to minimize the intra-class difference and maximize the inter-class difference between foreground polyps and backgrounds, enabling our model to capture concealed polyps.
In the fine-tuning stage, we introduce the IoU-guided Sample Re-weighting
arXiv Detail & Related papers (2024-01-10T07:03:41Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
Colonoscopy analysis is essential for assisting clinical diagnosis and treatment.
The scarcity of annotated data limits the effectiveness and generalization of existing methods.
We propose an Adaptive Refinement Semantic Diffusion Model (ArSDM) to generate colonoscopy images that benefit the downstream tasks.
arXiv Detail & Related papers (2023-09-03T07:55:46Z) - Interpretability-guided Data Augmentation for Robust Segmentation in
Multi-centre Colonoscopy Data [0.4915744683251151]
We introduce an innovative data augmentation approach centred on interpretability saliency maps.
The proposed augmentation technique demonstrates increased robustness across different segmentation models and domains.
arXiv Detail & Related papers (2023-08-30T09:03:28Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
Imbalanced datasets are commonly observed in various real-world applications, presenting significant challenges in training classifiers.
We propose generating synthetic samples iteratively by mixing data samples from both minority and majority classes.
We demonstrate the effectiveness of our proposed framework through extensive experiments conducted on seven publicly available benchmark datasets.
arXiv Detail & Related papers (2023-08-28T18:48:34Z) - Realistic Data Enrichment for Robust Image Segmentation in
Histopathology [2.248423960136122]
We propose a new approach, based on diffusion models, which can enrich an imbalanced dataset with plausible examples from underrepresented groups.
Our method can simply expand limited clinical datasets making them suitable to train machine learning pipelines.
arXiv Detail & Related papers (2023-04-19T09:52:50Z) - Ambiguous Medical Image Segmentation using Diffusion Models [60.378180265885945]
We introduce a single diffusion model-based approach that produces multiple plausible outputs by learning a distribution over group insights.
Our proposed model generates a distribution of segmentation masks by leveraging the inherent sampling process of diffusion.
Comprehensive results show that our proposed approach outperforms existing state-of-the-art ambiguous segmentation networks.
arXiv Detail & Related papers (2023-04-10T17:58:22Z) - Benchmarking common uncertainty estimation methods with
histopathological images under domain shift and label noise [62.997667081978825]
In high-risk environments, deep learning models need to be able to judge their uncertainty and reject inputs when there is a significant chance of misclassification.
We conduct a rigorous evaluation of the most commonly used uncertainty and robustness methods for the classification of Whole Slide Images.
We observe that ensembles of methods generally lead to better uncertainty estimates as well as an increased robustness towards domain shifts and label noise.
arXiv Detail & Related papers (2023-01-03T11:34:36Z) - Assessing generalisability of deep learning-based polyp detection and
segmentation methods through a computer vision challenge [11.914243295893984]
Polyps are well-known cancer precursors identified by colonoscopy.
Surveillance and removal of colonic polyps are highly operator-dependent procedures.
There exist a high missed detection rate and incomplete removal of colonic polyps.
arXiv Detail & Related papers (2022-02-24T11:25:52Z) - On the Importance of Diversity in Re-Sampling for Imbalanced Data and
Rare Events in Mortality Risk Models [0.0]
The Surgical Outcome Risk Tool (SORT) is one of the tools developed to predict mortality risk throughout the entire period for major elective in-patient surgeries in the UK.
In this study, we enhance the original SORT prediction model (SORT) by addressing the class imbalance within the dataset.
Our proposed method investigates the application of diversity-based selection on top of common re-sampling techniques.
arXiv Detail & Related papers (2020-12-15T09:45:35Z) - On the Benefits of Invariance in Neural Networks [56.362579457990094]
We show that training with data augmentation leads to better estimates of risk and thereof gradients, and we provide a PAC-Bayes generalization bound for models trained with data augmentation.
We also show that compared to data augmentation, feature averaging reduces generalization error when used with convex losses, and tightens PAC-Bayes bounds.
arXiv Detail & Related papers (2020-05-01T02:08:58Z) - MissDeepCausal: Causal Inference from Incomplete Data Using Deep Latent
Variable Models [14.173184309520453]
State-of-the-art methods for causal inference don't consider missing values.
Missing data require an adapted unconfoundedness hypothesis.
Latent confounders whose distribution is learned through variational autoencoders adapted to missing values are considered.
arXiv Detail & Related papers (2020-02-25T12:58:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.